0000000000650455
AUTHOR
Ephraim Eliav
First ionization potential of the heaviest actinide lawrencium, element 103
The first ionization potential (IP1 ) of element 103, lawrencium (Lr), has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP 1 value is 4.9630.08 0.07 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15) eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s 2 5f 14 7p 1 1/2 , which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens t…
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…
First Ionization Potentials of Fm, Md, No, and Lr
We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clear…
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to sup…
The electron affinity of astatine
One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and…
Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory
We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is prop…
Opportunities for Fundamental Physics Research with Radioactive Molecules
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…
Measurement of the first ionization potential of lawrencium (element 103)
Lawrencium, with atomic number 103, has an isotope with a half-life of 27 seconds; even so, its first ionization potential has now been measured on an atom-at-a-time scale and agrees well with state-of-the-art theoretical calculations that include relativistic effects. The most dramatic modern revision of Mendeleev's periodic table of elements came in 1944 when Glenn T. Seaborg placed a new series of elements, the actinides (atomic numbers 89–103), below the lanthanides. In this issue of Nature, Yuichiro Nagame and colleagues report the first measurement of one of the basic atomic properties of element 103 (lawrencium), namely its first ionization potential. Lawrencium is only accessible vi…
High-precision ab initio calculations of the spectrum of Lr$^+$
The planned measurement of optical resonances in singly-ionised lawrencium (Z = 103) requires accurate theoretical predictions to narrow the search window. We present high-precision, ab initio calculations of the electronic spectra of Lr$^+$ and its lighter homologue lutetium (Z = 71). We have employed the state-of-the-art relativistic Fock space coupled cluster approach and the AMBiT CI+MBPT code to calculate atomic energy levels, g-factors, and transition amplitudes and branching-ratios. Our calculations are in close agreement with experimentally measured energy levels and transition strengths for the homologue Lu$^+$ , and are well-converged for Lr$^+$ , where we expect a similar level o…
Large shape staggering in neutron-deficient Bi isotopes
The changes in the mean-square charge radius (relative to 209Bi), magnetic dipole, and electric quadrupole moments of 187,188,189,191Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in 187,188,189Big, manifested by a sharp radius increase for the ground state of 188Bi relative to the neighboring 187,189Big. A large isomer shift was also observed for 188Bim. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were…