0000000000650465

AUTHOR

Gerald Gwinner

Test of Time Dilation Using StoredLi+Ions as Clocks at Relativistic Speed

We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of β=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the 7Li+3S1 →3P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers' Doppler shifted frequencies required for resonance are measured with an accuracy of <4×10(-9) using optical-optical double resonance spectroscopy. This allows us to verify the special relativity relation between the time dilation factor γ and the velocity β, γ√1-β2=1 to within ±2.3×10(-9) at this velocity. The result, which is singled …

research product

Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed

We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of β=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the 7Li+3S1 → 3P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers’ Doppler shifted frequencies required for resonance are measured with an accuracy of 2=1 to within ±2.3×10−9 at this velocity. The result, which is singled out by a high boost velocity β, is also interpreted within Lorentz invariance violating test theories.

research product

Toward a New Test of the Relativistic Time Dilation Factor by Laser Spectroscopy of Fast Ions in a Storage Ring

The frequency measurement of Doppler-shifted optical lines of ions circulating in a storage ring at high speed permits a sensitive test of the relativistic Doppler-formula and, hence, the time dilation factor γSR of special relativity. Previous measurements at the storage ring TSR with 7Li+ at v = 0.065c gave a new, improved limit, but were hampered by the large observed linewidth, exceeding the natural width 15-fold. Recently we have identified the broadening to be caused by velocity-changing processes in the storage ring. Saturation spectroscopy has proven to be largely immune against these effects and has yielded linewidths only a few MHz larger than the natural one. This is the major in…

research product

Testing Time Dilation on Fast Ion Beams

We report the status of an experimental test of time dilation in Special Relativity. This is accomplished by simultaneously measuring the forward and backward Doppler shifts of an electronic transition of fast moving ions, using high-precision laser spectroscopy. From these two Doppler shifts both the ion velocity ? = v/c and the time dilation factor can be derived. From measurements based on saturation spectroscopy on lithium ions stored at ? = 0.03 and ? = 0.06 in the TSR heavy-ion storage ring, we achieved an upper limit for a [?2] deviation from Special Relativity of . In recent measurements on a ? = 0.34 Li+ beam in the ESR storage ring we used optical-optical double-resonance spectros…

research product

Test of relativistic time dilation with fast optical atomic clocks at different velocities

Time dilation is one of the most fascinating aspects of special relativity as it abolishes the notion of absolute time. It was first observed experimentally by Ives and Stilwell in 1938 using the Doppler effect. Here we report on a method, based on fast optical atomic clocks with large, but different Lorentz boosts, that tests relativistic time dilation with unprecedented precision. The approach combines ion storage and cooling with optical frequency counting using a frequency comb. 7Li+ ions are prepared at 6.4% and 3.0% of the speed of light in a storage ring, and their time is read with an accuracy of 2×10−10 using laser saturation spectroscopy. The comparison of the Doppler shifts yield…

research product

First Determination of the Ionization Potential of Actinium and First Observation of Optical Transitions in Ferminm

For the determination of the first ionization potential of actinium, 227Ac was electrodeposited on a Ta backing and covered with ~1 μm Zr. From this filament, Ac atoms were evaporated at ≥ 1250 °C. By resonant excitation with UV light of 388.67 nm and subsequent excitation with light of ca. 568 nm, Ac was ionized in an external electrical field. By determining the ionization thresholds as a function of the electrical field strength and by extrapolation to zero field strength, the first ionization potential of 43398(3) cm−1 = 5.3807(3) eV was measured.About 1 ng of 255Fm, half life 20.1 h, was prepared at ORNL by milking from 255Es produced in the High Flux Isotope Reactor and shipped to Mai…

research product

Polarization-Dependent Disappearance of a Resonance Signal -- Indication for Optical Pumping in a Storage Ring?

We report on laser spectroscopic measurements on Li$^+$ ions in the experimental storage ring ESR at the GSI Helmholtz Centre for Heavy Ion Research. Driving the $2s\,^3\!{S}_1\;(F=\frac{3}{2}) \,\leftrightarrow\,2p\,^3\!P_2\;(F=\frac{5}{2}) \leftrightarrow 2s\,^3\!{S}_1\;(F=\frac{5}{2})$ $\Lambda$-transition in $^7$Li$^+$ with two superimposed laser beams it was found that the use of circularly polarized light leads to a disappearance of the resonance structure in the fluorescence signal. This can be explained by optical pumping into a dark state of polarized ions. We present a detailed theoretical analysis of this process that supports the interpretation of optical pumping and demonstrate…

research product

Charge breeding rare isotopes for high precision mass measurements: challenges and opportunities

Ion charge breeding for Penning-trap mass spectrometry has been established as providing a precision increase that scales linearly with the charge state of the ion. Fast and efficient charge breeding is a precondition for the application of this approach to rare isotopes. However, in view of low yields and short half-lives the precision boost is partly compromised by unavoidable ion losses inherent to the charge breeding process. The mass spectrometer TRIUMFs ion trap for atomic and nuclear science is pioneering this field by coupling a Penning trap and an electron beam ion trap to the rare-isotope beam facility ISAC at TRIUMF. Here we present simulations that calculate and maximize the eff…

research product

Opportunities for Fundamental Physics Research with Radioactive Molecules

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…

research product

Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes

A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…

research product

Improved test of time dilation in special relativity.

An improved test of time dilation in special relativity has been performed using laser spectroscopy on fast ions at the heavy-ion storage-ring TSR in Heidelberg. The Doppler-shifted frequencies of a two-level transition in 7 Li + ions at v = 0.064c have been measured in the forward and backward direction to an accuracy of Δν/ν = 1 × 10 - 9 using collinear saturation spectroscopy. The result confirms the relativistic Doppler formula and sets a new limit of 2.2 × 10 - 7 for deviations from the time dilation factor γ S R = (1 - ν 2 /c 2 ) - 1 / 2 .

research product

Iodine hyperfine structure and absolute frequency measurements at 565, 576, and 585nm

Abstract The hyperfine structure splittings of the P(10)14-1, R(15)14-1, and R(99)15-1 transitions at 585 nm, P(62)17-1 at 576 nm, and P(80)21-1 at 565 nm in 127 I 2 are measured by heterodyne spectroscopy using two dye lasers. In addition, the absolute frequencies of the hyperfine components P(10)14-1 a 15 and P(80)21-1 a 10 are determined using a self-referenced frequency comb. These frequencies are used in an experiment testing relativistic time dilation by laser spectroscopy on a fast ion beam.

research product