0000000000650475

AUTHOR

Iain D. Moore

Internal conversion from excited electronic states of $^{229}{\mathrm Th}$ ions

The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of $^{229}{\mathrm Th}$. Due to the very low transition energy, the $^{229}{\mathrm Th}$ nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of ${\mathrm Th}^+$ and ${\mathrm Th}^{2+}$ ions. A possible experimental realization of the proposed scena…

research product

Electron-capture branch of Tc-100 and tests of nuclear wave functions for double-beta decays

We present a measurement of the electron-capture branch of 100Tc. Our value, B(EC)=(2.6±0.4)×10−5, implies that the 100Mo neutrino absorption cross section to the ground state of 100Tc is roughly one third larger than previously thought. Compared to previous measurements, our value of B(EC) prevents a smaller disagreement with QRPA calculations relevant to double-β decay matrix elements.

research product

Observation of Collisional De-Excitation Phenomena in Plutonium

Proceedings for the "virtual Workshop on the Atomic Structure of Actinides & Related Topics" conference submitted to the special issue of Atoms "Atomic Structure of the Heaviest Elements". A program of research towards the high-resolution optical spectroscopy of actinide elements for the study of fundamental nuclear structure is currently ongoing at the IGISOL facility of the University of Jyväskylä. One aspect of this work is the development of a gas-cell-based actinide laser ion source using filament-based dispensers of long-lived actinide isotopes. We have observed prominent phenomena in the resonant laser ionization process specific to the gaseous envir…

research product

Opportunities for Fundamental Physics Research with Radioactive Molecules

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…

research product

RAPTOR : A new collinear laser ionization spectroscopy and laser-radiofrequency double-resonance experiment at the IGISOL facility

RAPTOR, Resonance ionization spectroscopy And Purification Traps for Optimized spectRoscopy, is a new collinear resonance ionization spectroscopy device constructed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyv\"askyl\"a, Finland. By operating at beam energies of under 10 keV, the footprint of the experiment is reduced compared to more traditional collinear laser spectroscopy beamlines. In addition, RAPTOR is coupled to the JYFLTRAP Penning trap mass spectrometer, opening a window to laser-assisted nuclear-state selective purification, serving not only the mass measurement program, but also supporting post-trap decay spectroscopy experiments. Finally,…

research product

The science case of the FRS Ion Catcher for FAIR Phase-0

The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…

research product