0000000000650673
AUTHOR
Eugenio Pozzoli
Small-time bilinear control of Schrödinger equations with application to rotating linear molecules
In [14] Duca and Nersesyan proved a small-time controllability property of nonlinear Schrödinger equations on a d-dimensional torus $\mathbb{T}^d$. In this paper we study a similar property, in the linear setting, starting from a closed Riemannian manifold. We then focus on the 2-dimensional sphere $S^2$, which models the bilinear control of a rotating linear top: as a corollary, we obtain the approximate controllability in arbitrarily small times among particular eigenfunctions of the Laplacian of $S^2$.
Single-input perturbative control of a quantum symmetric rotor
We consider the Schr\"odinger partial differential equation of a rotating symmetric rigid molecule (symmetric rotor) driven by a z-linearly polarized electric field, as prototype of degenerate infinite-dimensional bilinear control system. By introducing an abstract perturbative criterium, we classify its simultaneous approximate controllability; based on this insight, we numerically perform an orientational selective transfer of rotational population.