0000000000650678
AUTHOR
Francesca Calegari
Attosecond control of dissociative ionization of O2molecules
We demonstrate that dissociative ionization of O(2) can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.
Correlation-driven sub-3 fs charge migration in ionised adenine
Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly change. Capturing this few-femtosecond/attosecond charge redistribution represents the real-time observation of the electron correlation in the molecule. So far, there has been no experimental evidence of this process. Here we report on a time-resolved study of the correlation-driven charge migration process occurring in the bio-relevant molecule adenine after ionisation by a 15-35 eV attosecond pulse . We find that, the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisa…
Ultrafast dynamics of adenine following XUV ionization
JPhys photonics 4, 034003 (2022). doi:10.1088/2515-7647/ac6ea5 special issue: "Focus on Nanophotonics and Biophotonics for Biomedical and Environmental Applications"