0000000000651393

AUTHOR

L. Jan Anton Koster

showing 3 related works from this author

Improving Perovskite Solar Cells: Insights From a Validated Device Model

2017

To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of contacts, the electron and hole transport layers, charge generation, drift and diffusion of charge carriers and recombination. The simulation to the experimental data of vacuum-deposited CH3NH3PbI3 solar cells over multiple thicknesses has been fit and the device behavior under different operating conditions has been studied to delineate the influence of the external bias, charge-carrier mobilities, e…

Solar cellsMaterials sciencePassivationNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesPolymer solar celllaw.inventionlawSolar cellGeneral Materials SciencePerovskite (structure)Theory of solar cellsRenewable Energy Sustainability and the Environmentbusiness.industryEnergy conversion efficiencyHybrid solar cell021001 nanoscience & nanotechnology0104 chemical sciencesPEROVSKITESOptoelectronicsCharge carrierPerovskite Solar CellsDEVICE PHYSICS0210 nano-technologybusinessAdvanced Energy Materials
researchProduct

Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness

2019

Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work…

Materials scienceEnergy Engineering and Power TechnologyRECOMBINATIONdopingConductivityperovskite solar cellsCH3NH3PBI3Materials ChemistryElectrochemistryChemical Engineering (miscellaneous)ddc:530Electrical and Electronic EngineeringHYSTERESISMaterialsCèl·lules fotoelèctriquesPerovskite (structure)business.industryPhotovoltaic systemDopingInstitut für Physik und AstronomieCharge (physics)LimitingConductivitat elèctricaHALIDE PEROVSKITEScharge transportHysteresistransport layersOptoelectronicsTIO2conductivitybusiness
researchProduct

Recombination in Perovskite Solar Cells

2017

Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CH3NH3PbI3 solar cells, including the light intensity dependence of the open circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain bounda…

Materials scienceLetterEFFICIENCYMETHYLAMMONIUM LEAD IODIDEMIGRATIONEnergy Engineering and Power TechnologyNanotechnology02 engineering and technologyQuantum dot solar cell010402 general chemistryFILMS01 natural sciencesIonMaterials ChemistryORGANOMETAL TRIHALIDE PEROVSKITEVOLTAGEHYSTERESISPerovskite (structure)Theory of solar cellsRenewable Energy Sustainability and the EnvironmentHybrid solar cellELECTRICAL-PROPERTIES021001 nanoscience & nanotechnologySURFACE-DEFECTSTRANSPORT0104 chemical sciencesLight intensityFuel TechnologyChemistry (miscellaneous)Chemical physicsGrain boundary0210 nano-technologyRecombinationACS Energy Letters
researchProduct