0000000000651505

AUTHOR

Guglielmo Fortunato

A DC and small signal AC model for organic thin film transistors including contact effects and non quasi static regime

Abstract We present a compact model for the DC and small signal AC analysis of Organic Thin Film Transistors (OTFTs). The DC part of the model assumes that the electrical current injected in the OTFT is limited by the presence of a metal/organic semiconductor junction that, at source, acts as a reverse biased Schottky junction. By including this junction, modeled as a reverse biased gated diode at source, the DC model is able to reproduce the scaling of the electrical characteristics even for short channel devices. The small signal AC part of the model uses a transmission line approach in order to compute the impedances of the channel and parasitic regions of the device. The overlap capacit…

research product

A Compact SPICE Model for Organic TFTs and Applications to Logic Circuit Design

This work introduces a compact DC model developed for organic thin film transistors (OTFTs) and its SPICE implementation. The model relies on a modified version of the gradual channel approximation that takes into account the contact effects, occurring at nonohmic metal/organic semiconductor junctions, modeling them as reverse biased Schottky diodes. The model also comprises channel length modulation and scalability of drain current with respect to channel length. To show the suitability of the model, we used it to design an inverter and a ring oscillator circuit. Furthermore, an experimental validation of the OTFTs has been done at the level of the single device as well as with a discrete-…

research product

MATERIALS AND PROCESSING ISSUES FOR THE MANUFACTURING OF INTEGRATED PASSIVE AND ACTIVE DEVICES ON FLEXIBLE SUBSTRATES

Plast_ICs is a Public/Private Laboratory funded by Italian Government aimed to build a novel technological platform for the development of flexible electronics, mainly, but not solely, based on thin inorganic films. Integration of different functions, on single and/or multiple plastic foils, to generate a smart system is the final goal of the project. The building blocks of the platform will be presented, starting from the different plastic substrates characterization, going through the development of active devices, such as thin-film- transistors, and passive devices, like thin-film- resistors, capacitors, inductors. Fully inorganic elementary devices, based on optical patterning and in va…

research product