0000000000651613
AUTHOR
Wenbin Zhao
Bayesian inference of the fluctuating proton shape in DIS and hadronic collisions
We determine the likelihood distribution for the model parameters describing the event-by-event fluctuating proton geometry at small $x$ by performing a Bayesian analysis within the Color Glass Condensate framework. The exclusive $\mathrm{J}/\psi$ production data from HERA is found to constrain the model parameters well, and we demonstrate that complementary constraints can be obtained from simulations of Pb+Pb collisions at the LHC.
Multi-scale Imaging of Nuclear Deformation at the Electron Ion Collider
We show within the Color Glass Condensate framework that exclusive vector meson production at high energy is sensitive to the geometric deformation of the target nucleus at multiple length scales. Studying $e+$U collisions and varying the deformation of the uranium target, we demonstrate that larger deformations result in enhanced incoherent vector meson production cross sections. Further, different multipole deformation parameters affect different regions of transverse momentum transfer. Employing JIMWLK evolution to study the Bjorken-$x$ dependence of our results, we find that the ratio of incoherent to coherent cross sections decreases with decreasing $x$, largely independently of the qu…
Bayesian inference of the fluctuating proton shape
Using Bayesian inference, we determine probabilistic constraints on the parameters describing the fluctuating structure of protons at high energy. We employ the color glass condensate framework supplemented with a model for the spatial structure of the proton, along with experimental data from the ZEUS and H1 Collaborations on coherent and incoherent diffractive $\mathrm{J}/\psi$ production in e+p collisions at HERA. This data is found to constrain most model parameters well. This work sets the stage for future global analyses, including experimental data from e+p, p+p, and p+A collisions, to constrain the fluctuating structure of nucleons along with properties of the final state.