0000000000651705

AUTHOR

Juho Arjoranta

Intrinsic spin-orbit interaction in diffusive normal wire Josephson weak links: Supercurrent and density of states

We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor--nanowire--superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic exchange field or the Zeeman effect of an applied field. We solve the full non-linear Usadel equations numerically and analyze the resulting supercurrent through the weak link and the behavior of the density of states in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range spin triplet supercurrent, which remains finite even in the limit of very large exchange fields. In particular, we show how rotating the fi…

research product

Intrinsic spin-orbit interaction in diffusive normal wire Josephson weak links: Supercurrent and density of states

We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor–nanowire–superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic exchange field or the Zeeman effect of an applied field. We solve the full nonlinear Usadel equations numerically [The code used for calculating the results in this paper is available in https://github.com/wompo/Usadel-for-nanowires] and analyze the resulting supercurrent through the weak link and the behavior of the density of states in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range spin triplet supercurr…

research product