0000000000652866
AUTHOR
M. Capodici
LE EMISSIONI DI GAS CLIMALTERANTI DAI SISTEMI MBR
La salvaguardia dell’ambiente pone ad oggi delle nuove sfide nei confronti dei cambiamenti climatici. Invero, il fenomeno del climate change, i cui principali effetti portano ad un innalzamento delle temperature a seguito del rilascio di emissioni di gas climalteranti (i.e., anidride carbonica, CO2; metano, CH4; protossido di azoto, N2O), richiede degli interventi a breve, medio e lungo termine per limitare i sempre più crescenti danni ambientali. Gli impianti di depurazione contribuiscono anch’essi al fenomeno del climate change attraverso le emissioni di gas climalteranti (Global Water Research Coalition – GWRC, 2011; Law et al., 2012; Zhan et al., 2017).
A moving bed membrane bioreactor pilot plant for carbon and nutrient removal
The paper reports the main results of an experimental gathering campaign carried out on a moving bed membrane bioreactor pilot plant conceived for carbon and nutrients removal according to a University of Cape Town scheme. Organic carbon, nitrogen and phosphorus removal, biokinetic/stoichiometric constants, membrane fouling tendency and sludge dewaterability have been assessed during experiments. The achieved results showed that pilot plant was able to guarantee very high carbon removal, with average efficiency of 98%. In terms of nitrification, the system showed an excellent performance, with efficiencies higher than 98% for most of the experiments. This result might be related to the pres…
Greenhouse gas emissions from membrane bioreactors: analysis of a two-year survey on MBRs
The study aims at evaluating the nitrous oxide (N2O) emission from membrane bioreactors (MBRs) for wastewater treatment. With this regards two-years of experimental activities were performed. More specifically, the study investigates the N2O emissions considering multiple influential factors: i. configurations (i.e., sequential batch- SB-MBR; pre-denitrification - DN-MBR; University Cape Town, UCT-MBR and UCT moving bed biofilm reactor, UCT-MB-MBR); ii. wastewater composition (municipal or industrial); iii. Plant operational conditions (i.e., sludge retention time, SRT, carbon-to-nitrogen ratio, C/N, hydraulic retention time, HRT); iv. and membrane modules. Among the overall analysed config…
Materials recovery from WEEE: current situation in Sicily.
The potential recovery of materials and energy in one year in Italy and in Sicily was estimated assuming that all WEEEs were gathered through the collection – treatment – disposal system implemented according to the rules in force. The embodied energy (EE) recovery associated to material recovery was also estimated, starting from standard values of EE and from yields declared for each component. Mass fractions composition for some categories of WEEE given by a facility in Catania agree with the national averages. Starting from data given by another facility - located in Siracusa - which processes all the five R categories (R1 to R5), potential mass and energy recovery was estimated for this…
Greenhouse gas from moving bed based integrated fixed film activated sludge membrane bioreactors
The present paper reports the results of a nitrous oxide production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the UCT layout for biological phosphorous removal. Samples of gas and liquid were collected in order to measure the gaseous, as well as the dissolved concentration of N2O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N2O was, however, also found in the anaerobic reactor, thus indicating a probable occur…