0000000000653114

AUTHOR

Maris Sinka

Sapropel as a Binder: Properties and Application Possibilities for Composite Materials

Recent development trends largely look for possibilities of a wider use of natural materials and local resources. In this perspective, the use of organic rich lake sediment - sapropel - as a binding material in line with other environmentally friendly filling materials can be considered as a challenge. Sapropel itself is a valuable resource with multiple areas of application, for example, medicine, veterinary, agriculture, livestock farming, balneology, cosmetic applications, construction, and its application options have been widely studied in the 20th century in the Baltic countries, Ukraine and Russia. Birch wood fibre and sanding dust, hemp shives, 'Aerosil' are used as a filler and thr…

research product

Assessment of Plant Origin By-Products as Lightweight Aggregates for Bio-Composite Bounded by Starch Binder

Thermal insulation bio-composites made of plant origin by-products as bio-aggregates are one of the ways to decrease the impact of the building and construction sector on CO2 emissions. In this study, three bio-aggregates were analysed for their potential use in the production of bio-composites with potato starch binder. Technologically important properties, such as particle size, shape and compacted bulk density, as well as properties of the resulting bio-composites were identified. The main characteristics of the aggregates are relatively similar: density of 80–100 kg/m3, thermal conductivity of 0.042–0.045 W/m∙K, specific heat capacity of 1240–1330 J/g∙K, ki…

research product

Microbiological Stability of Bio-Based Building Materials

The aim of this paper was to study the microbiological stability of bio-based composite building materials, which are made using organic-rich lake sediments (further – sapropel) with lime and magnesium cement as binders and hemp shives as filler. The microbial stability properties of the obtained composite materials were investigated and compared to similar composites. Because of their high organic content, these materials are prone to biodegradation; therefore, they were coated with ALINA LIFE TM organoclay coating, which helps to extend the product life, reducing the rate of biodegradation compared to the biocides used in industry. The effect of the coating on the resistance to decay by t…

research product

Experimental testing of phase change materials in a warm-summer humid continental climate

Abstract The construction industry (and buildings) is one of the largest energy consuming and CO2 emitting sectors in the world. To counter this, more lightweight structures are being used and energy saving applications are being developed. Phase change materials (PCM) are materials that can be considered to tackle these new challenges. It has been proven that PCMs can be passively used to improve the thermal mass of lightweight structures, which improves thermal comfort and reduces peak cooling and heating loads and therefore provides energy savings. To use these materials in an active way, they should be used together with ventilation, cooling or heating equipment, and collectors to accum…

research product

In-situ measurements of hemp-lime insulation materials for energy efficiency improvement

Abstract Reduction of the CO2 emissions in the atmosphere is one of the goals set forth by the European Union, hence various directives have been adopted, such as the European directive 2012/27/EU on energy efficiency, i.e. ensuring from 2019 the construction of the near-zero energy buildings (nZEB). The construction segment plays a very important part in solving the current global problem of the greenhouse gas emissions and related processes of global warming, because in certain countries (i.e. in Latvia) it represents more than a half of the total energy consumption. Hence the necessity to elaborate means on how to boost the energy efficiency of the buildings meanwhile not rising pressure…

research product