0000000000653508

AUTHOR

Daniel Galviz

showing 2 related works from this author

Improved $K_{e3}$ radiative corrections sharpen the $K_{\mu 2}$--$K_{l3}$ discrepancy

2021

The measurements of $V_{us}$ in leptonic $(K_{\mu 2})$ and semileptonic $(K_{l3})$ kaon decays exhibit a $3\sigma$ disagreement, which could originate either from physics beyond the Standard Model or some large unidentified Standard Model systematic effects. Clarifying this issue requires a careful examination of all existing Standard Model inputs. Making use of a newly-proposed computational framework and the most recent lattice QCD results, we perform a comprehensive re-analysis of the electroweak radiative corrections to the $K_{e3}$ decay rates that achieves an unprecedented level of precision of $10^{-4}$, which improves the current best results by almost an order of magnitude. No larg…

PhysicsNuclear and High Energy PhysicsParticle physicsNuclear Theory010308 nuclear & particles physicsPhysics beyond the Standard ModelElectroweak interactionLattice QCDLattice QCDQC770-79801 natural sciencesStandard ModelHigh Energy Physics - ExperimentKaon PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesRadiative transferPrecision QEDHigh Energy Physics::Experiment010306 general physicsNuclear ExperimentOrder of magnitude
researchProduct

High-precision determination of the $K_{e3}$ radiative corrections

2021

We report a high-precision calculation of the Standard Model electroweak radiative corrections in the $K\to \pi e^+\nu(\gamma)$ decay as a part of the combined theory effort to understand the existing anomaly in the determinations of $V_{us}$. Our new analysis features a chiral resummation of the large infrared-singular terms in the radiative corrections and a well-under-control strong interaction uncertainty based on the most recent lattice QCD inputs. While being consistent with the current state-of-the-art results obtained from chiral perturbation theory, we reduce the existing theory uncertainty from $10^{-3}$ to $10^{-4}$. Our result suggests that the Standard Model electroweak effects…

Nuclear and High Energy PhysicsParticle physicsChiral perturbation theoryNuclear TheoryQC1-999Strong interactionFOS: Physical sciences01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesRadiative transferddc:530ResummationNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsPhysicsElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)Lattice QCDHigh Energy Physics - PhenomenologyAnomaly (physics)
researchProduct