6533b835fe1ef96bd129f732

RESEARCH PRODUCT

High-precision determination of the $K_{e3}$ radiative corrections

Chien Yeah SengDaniel GalvizUlf-g. MeißnerUlf-g. MeißnerUlf-g. MeißnerMikhail Gorchtein

subject

Nuclear and High Energy PhysicsParticle physicsChiral perturbation theoryNuclear TheoryQC1-999Strong interactionFOS: Physical sciences01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesRadiative transferddc:530ResummationNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsPhysicsElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)Lattice QCDHigh Energy Physics - PhenomenologyAnomaly (physics)

description

We report a high-precision calculation of the Standard Model electroweak radiative corrections in the $K\to \pi e^+\nu(\gamma)$ decay as a part of the combined theory effort to understand the existing anomaly in the determinations of $V_{us}$. Our new analysis features a chiral resummation of the large infrared-singular terms in the radiative corrections and a well-under-control strong interaction uncertainty based on the most recent lattice QCD inputs. While being consistent with the current state-of-the-art results obtained from chiral perturbation theory, we reduce the existing theory uncertainty from $10^{-3}$ to $10^{-4}$. Our result suggests that the Standard Model electroweak effects cannot account for the $V_{us}$ anomaly.

https://dx.doi.org/10.48550/arxiv.2103.00975