0000000000653516

AUTHOR

Beom-soo Kim

showing 4 related works from this author

Vacuum-Deposited Microcavity Perovskite Photovoltaic Devices

2021

The interaction between semiconductor materials and electromagnetic fields resonating in microcavities or the light-matter coupling is of both fundamental and practical significance for improving the performance of various photonic technologies. The demonstration of light-matter coupling effects in the emerging perovskite-based optoelectronic devices via optical pumping and electrical readout (e.g., photovoltaics) and vice versa (e.g., light-emitting diodes), however, is still scarce. Here, we demonstrate the microcavity formation in vacuum-deposited methylammonium lead iodide (CH3NH3PbI3, MAPI) p-i-n photovoltaic devices fabricated between two reflecting silver electrodes. We tune the posi…

Materials sciencebusiness.industrylight-matter couplingPhotovoltaic systemPhysics::OpticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsphotovoltaicmicrocavity devicehybrid organic inorganic perovskiteOptoelectronicsvacuum depositionElectrical and Electronic EngineeringbusinessMaterialsBiotechnologyPerovskite (structure)
researchProduct

Simple approach for an electron extraction layer in all-vacuum processed n-i-p perovskite solar cell

2021

Vacuum processing is considered to be a promising method allowing the scalable fabrication of perovskite solar cells (PSCs). In vacuum processed PSCs, the n-i-p structure employing organic charge transport layers is less common than the p-i-n structure due to limited options to achieve an efficient electron extraction layer (EEL) on indium tin oxide (ITO) with vacuum thermal evaporation. There are a number of specific applications where an n-i-p structure is required and therefore, it is of interest to have alternative solutions for the n-type contact in vacuum processed PSCs. In this work, we report an efficient vacuum deposited EEL using a mixture of conventional organic small molecules, …

EnergiaCèl·lules fotoelèctriques
researchProduct

Deposition Kinetics and Compositional Control of Vacuum-Processed CH3NH3PbI3 Perovskite

2020

Halide perovskites have generated considerable research interest due to their excellent optoelectronic properties in the past decade. To ensure the formation of high-quality semiconductors, the deposition process for the perovskite film is a critical issue. Vacuum-based processing is considered to be a promising method, allowing, in principle, for uniform deposition on a large area. One of the benefits of vacuum processing is the control over the film composition through the use of quartz crystal microbalances (QCMs) that monitor the rates of the components in situ. In metal halide perovskites, however, one frequently employed component or precursor, CH3NH3I, exhibits nonstandard sublimatio…

Materials sciencebusiness.industryHalide02 engineering and technologyQuartz crystal microbalance010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAdsorptionSemiconductorSemiconductorsChemical engineeringGeneral Materials ScienceSublimation (phase transition)Physical and Theoretical Chemistry0210 nano-technologybusinessMaterialsQuartzStoichiometryPerovskite (structure)The Journal of Physical Chemistry Letters
researchProduct

Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA 1– x MA x PbI 3

2020

Preparation of black formamidinium lead iodide (FAPbI3) requires high temperature annealing and the incorporation of smaller A-site cations, such as methylammonium (MA+), cesium or rubidium. A major advantage of vacuum processing is the possibility to deposit perovskite films at room temperature (RT), without any annealing step. Here we demonstrate stabilization of the cubic perovskite phase at RT, in a three-sources co-sublimation method. We found that the MA+ incorporation is a self-limiting process, where the amount of MA+ which is incorporated in the perovskite is essentially unvaried with increasing MAI deposition rate. In this way a phase-pure, cubic perovskite with a bandgap of 1.53 …

Materials scienceAnnealing (metallurgy)virusesIodideInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyRubidiumMaterials ChemistryCèl·lules fotoelèctriqueschemistry.chemical_classificationRenewable Energy Sustainability and the EnvironmentConductivitat elèctrica021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyFormamidiniumchemistryChemistry (miscellaneous)Caesium0210 nano-technologyACS Energy Letters
researchProduct