Pore formation by Vibrio cholerae cytolysin requires cholesterol in both monolayers of the target membrane
Vibrio cholerae cytolysin (VCC) forms oligomeric transmembrane pores in cholesterol-rich membranes. To better understand this process, we used planar bilayer membranes. In symmetric membranes, the rate of the channel formation by VCC has a superlinear dependency on the cholesterol membrane fraction. Thus, more than one cholesterol molecule can facilitate VCC-pore formation. In asymmetric membranes, the rate of pore formation is limited by the leaflet with the lower cholesterol content. Methyl-beta-cyclodextrin, which removes cholesterol from membranes, rapidly inhibits VCC pore formation, even when it is added to the side opposite that of VCC addition. The results suggest that cholesterol i…