0000000000654330

AUTHOR

Diego H. Sanchez

Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis

Salt stress has been frequently studied in its first osmotic phase. Very often, data regarding the second ionic phase is missing. It has also been suggested that Putrescine or/and Spermine could be responsible for salt resistance. In order to test this hypothesis under long-term salt stress, we obtained Arabidopsis thaliana transgenic plants harboring pRD29A::oatADC or pRD29A::GUS construction. Although Putrescine was the only polyamine significantly increased after salt acclimation in pRD29A::oatADC transgenic lines, this rendered in no advantage to this kind of stress. The higher Spermine levels found in WT and transgenic lines when compared to control conditions along with no increment o…

research product

Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic pl…

research product

New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress

Polyamines (putrescine, spermidine and spermine) are traditionally implicated in the response of plants to environmental cues. Free spermine accumulation has been suggested as a particular feature of long-term salt stress, and in the model plant Arabidopsis thaliana the spermine synthase gene (AtSPMS) has been reported as inducible by abscisic acid (ABA) and acute salt stress treatments. With the aim to unravel the physiological role of free spermine during salinity, we analyzed polyamine metabolism in A. thaliana salt-hypersensitive sos mutants (salt overlay sensitive; sos1-1, sos2-1 and sos3-1), and studied the salt stress tolerance of the mutants in spermine and thermospermine synthesis …

research product