0000000000656534

AUTHOR

Vittorio Boccone

showing 5 related works from this author

Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

2014

The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in ord…

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Monte Carlo methodFOS: Physical sciencesSuperconducting magnetTracking (particle physics)law.inventionNuclear physicslawlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)Large Hadron Collider (France and Switzerland)Nuclear ExperimentPhysicsLarge Hadron ColliderColliders (Nuclear physics)Particle acceleratorCollimatorSurfaces and InterfacesAccelerators and Storage RingsOrders of magnitude (time)lcsh:QC770-798Physics::Accelerator PhysicsPhysics - Accelerator PhysicsBeam (structure)
researchProduct

Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste

2016

Neutron-induced reaction cross sections play an important role in a wide variety of research fields, ranging from stellar nucleosynthesis, the investigation of nuclear level density studies, to applications of nuclear technology, including the transmutation of nuclear waste, accelerator-driven systems, and nuclear fuel cycle investigations. Simulations of nuclear technology applications largely rely on evaluated nuclear data libraries. These libraries are based both on experimental data and theoretical models. An outline of experimental nuclear data activities at CERN’s neutron time-of-flight facility, n_TOF, will be presented.

Nuclear fuel cycleNuclear technologyStellar nucleosynthesisNuclear transmutationChemistryNuclear engineeringNuclear TheoryRadioactive wasteNuclear dataNeutronNuclear ExperimentThorium fuel cycle
researchProduct

High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility

2016

The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n-TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented. © The Authors, published by EDP Sciences, 2017.

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsCross section (physics)Physics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesThermalCERNNeutronddc:530Nuclear Physics - Experiment010306 general physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsRange (particle radiation)Large Hadron Collider:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicsPhysicsRadiative captureNuclear energyNuclear reactionEnergia nuclearEnergy (signal processing)
researchProduct

Fission fragment angular distribution of 232Th(n,f) at the CERN n TOF facility

2014

The angular distribution of fragments emitted in neutron-induced fission of 232Th was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the 232Th(n,f) between fission threshold and 100 MeV are presented here.

PhysicsNuclear reaction:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsNuclear and High Energy PhysicsLarge Hadron Collidercross sectionFragment (computer graphics)FissionPhysics::Instrumentation and DetectorsNuclear TheoryTOFNuclear data232Th; n_TOF; fission fragments; angular distributionNuclear physicsCross section (physics)Angular distributionneutronPhysics::Accelerator PhysicsfissionNeutronNuclear Experimentnuclear reactions
researchProduct

Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN

2016

New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental …

Nuclear reactionNuclear transmutationnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron ColliderCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionCalorimeter
researchProduct