0000000000656578
AUTHOR
G.a.p. Cirrone
Carbon fragmentation measurements and validation of the GEANT4 nuclear reaction models for hadrontherapy
Nuclear fragmentation measurements are necessary when using heavy-ion beams in hadrontherapy to predict the effects of the ion nuclear interactions within the human body. Moreover, they are also fundamental to validate and improve the Monte Carlo codes for their use in planning tumor treatments. Nowadays, a very limited set of carbon fragmentation cross sections are being measured, and in particular, to our knowledge, no double-differential fragmentation cross sections at intermediate energies are available in the literature. In this work, we have measured the double-differential cross sections and the angular distributions of the secondary fragments produced in the (12)C fragmentation at 6…
Use of 70 MeV proton beam for medical applications at INFN-LNS: CATANA project
The project CATANA (Centro di Adro Terapia ed Applicazioni Nucleari Avanzate) is a collaboration between the INFN-Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute and Radiology Institute of the Catania University and CSFNSM Catania. The main goal of CATANA is the study and the application of protontherapy for the treatment of shallow tumors (4 cm max) like uveal melanomas and subfoveal macular degenerations.
Monte Carlo evaluation of the Filtered Back Projection method for image reconstruction in proton computed tomography
Abstract In this paper the use of the Filtered Back Projection (FBP) Algorithm, in order to reconstruct tomographic images using the high energy (200–250 MeV) proton beams, is investigated. The algorithm has been studied in detail with a Monte Carlo approach and image quality has been analysed and compared with the total absorbed dose. A proton Computed Tomography (pCT) apparatus, developed by our group, has been fully simulated to exploit the power of the Geant4 Monte Carlo toolkit. From the simulation of the apparatus, a set of tomographic images of a test phantom has been reconstructed using the FBP at different absorbed dose values. The images have been evaluated in terms of homogeneity…
The FIRST experiment at GSI
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…
Thermoluminescence response of sodalime glass irradiated with proton and neutron beams
In the research field of emergency dosimeters to be used in case of accidental radiation exposure of the population, watch glass has been considered as a possible fortuitous dosimetric material. This paper reports on results obtained by thermoluminescence of glass samples exposed to neutron and proton beams. Thermoluminescent glow curves have been analyzed for each irradiation studying the modifications induced by the irradiation as a function of proton dose or neutron fluence. The glow curve in a specific temperature range has been used as dosimetric parameter. The thermoluminescence response of samples exposed to protons has been found to be linear in the dose range between 2 and 20 Gy an…
FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy
International audience; Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the …