Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds
We prove that if $M$ is a closed $n$-dimensional Riemannian manifold, $n \ge 3$, with ${\rm Ric}\ge n-1$ and for which the optimal constant in the critical Sobolev inequality equals the one of the $n$-dimensional sphere $\mathbb{S}^n$, then $M$ is isometric to $\mathbb{S}^n$. An almost-rigidity result is also established, saying that if equality is almost achieved, then $M$ is close in the measure Gromov-Hausdorff sense to a spherical suspension. These statements are obtained in the ${\rm RCD}$-setting of (possibly non-smooth) metric measure spaces satisfying synthetic lower Ricci curvature bounds. An independent result of our analysis is the characterization of the best constant in the Sob…