0000000000656585

AUTHOR

Ivan Yuri Violo

Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds

We prove that if $M$ is a closed $n$-dimensional Riemannian manifold, $n \ge 3$, with ${\rm Ric}\ge n-1$ and for which the optimal constant in the critical Sobolev inequality equals the one of the $n$-dimensional sphere $\mathbb{S}^n$, then $M$ is isometric to $\mathbb{S}^n$. An almost-rigidity result is also established, saying that if equality is almost achieved, then $M$ is close in the measure Gromov-Hausdorff sense to a spherical suspension. These statements are obtained in the ${\rm RCD}$-setting of (possibly non-smooth) metric measure spaces satisfying synthetic lower Ricci curvature bounds. An independent result of our analysis is the characterization of the best constant in the Sob…

research product

Monotonicity Formulas for Harmonic Functions in RCD(0,N) Spaces

We generalize to the RCD(0,N) setting a family of monotonicity formulas by Colding and Minicozzi for positive harmonic functions in Riemannian manifolds with nonnegative Ricci curvature. Rigidity and almost rigidity statements are also proven, the second appearing to be new even in the smooth setting. Motivated by the recent work in Agostiniani et al. (Invent. Math. 222(3):1033–1101, 2020), we also introduce the notion of electrostatic potential in RCD spaces, which also satisfies our monotonicity formulas. Our arguments are mainly based on new estimates for harmonic functions in RCD(K,N) spaces and on a new functional version of the ‘(almost) outer volume cone implies (almost) outer metric…

research product

A remark on two notions of flatness for sets in the Euclidean space

In this note we compare two ways of measuring the $n$-dimensional "flatness" of a set $S\subset \mathbb{R}^d$, where $n\in \mathbb{N}$ and $d>n$. The first one is to consider the classical Reifenberg-flat numbers $\alpha(x,r)$ ($x \in S$, $r>0$), which measure the minimal scaling-invariant Hausdorff distances in $B_r(x)$ between $S$ and $n$-dimensional affine subspaces of $\mathbb{R}^d$. The second is an `intrinsic' approach in which we view the same set $S$ as a metric space (endowed with the induced Euclidean distance). Then we consider numbers ${\sf a}(x,r)$'s, that are the scaling-invariant Gromov-Hausdorff distances between balls centered at $x$ of radius $r$ in $S$ and the $n$-dimensi…

research product