0000000000656592

AUTHOR

Bo Heinemann

Single amino acids in the lumenal loop domain influence the stability of the major light-harvesting chlorophyll a/b complex.

The major light-harvesting complex of photosystem II (LHCIIb) is one of the most abundant integral membrane proteins. It greatly enhances the efficiency of photosynthesis in green plants by binding a large number of accessory pigments that absorb light energy and conduct it toward the photosynthetic reaction centers. Most of these pigments are associated with the three transmembrane and one amphiphilic alpha helices of the protein. Less is known about the significance of the loop domains connecting the alpha helices for pigment binding. Therefore, we randomly exchanged single amino acids in the lumenal loop domain of the bacterially expressed apoprotein Lhcb1 and then reconstituted the muta…

research product

Random mutations directed to transmembrane and loop domains of the light-harvesting chlorophyll a/b protein: impact on pigment binding.

The major light-harvesting complex of photosystem II (LHCII) can be reconstituted in vitro by folding its bacterially expressed apoprotein, Lhcb, in detergent solution in the presence of chlorophylls and carotenoids. To compare the impact of alpha-helical transmembrane domains and hydrophilic loop domains of the apoprotein on complex formation and stability, we introduced random mutations into a segment of the protein comprising the stromal loop, the third (C-proximal) transmembrane helix, and part of the amphipathic helix in the C-terminal domain. The mutant versions of Lhcb were screened for the loss of their ability to form stable LHCII upon reconstitution in vitro. Most steps during the…

research product