0000000000656598

AUTHOR

Ilaria Ciofini

0000-0002-5391-4522

CO Oxidation on Cationic Gold Clusters: A Theoretical Study

Aiming at understanding the elementary steps governing the oxidation of CO catalyzed by dispersed or supported gold nanoclusters, the reactivity of molecular species, such as O2 and CO, on neutral and positively charged Au13 clusters have been studied using a DFT approach. Two CO oxidation mechanisms have been simulated, involving respectively the adsorption of CO and O2 on adjacent catalytic sites (two-sites mechanism) and the competitive interaction of the reactants on the same site (single-site mechanism). It is demonstrated that in the former scheme a definite interaction of CO and O2 with both the charged and neutral cluster is effective, but that a chemical reaction between the adsorb…

research product

Multiple Roles of Isocyanides in Palladium-Catalyzed Imidoylative Couplings: A Mechanistic Study

International audience; Kinetic, spectroscopic and computational studies examining a palladium-catalyzed imidoylative coupling highlight the dual role of isocyanides as both substrates and ligands for this class of transformations. The synthesis of secondary amides from aryl halides and water is presented as a case study. The kinetics of the oxidative addition of ArI with RNC-ligated Pd-0 species have been studied and the resulting imidoyl complex [(ArC=NR)Pd(CNR)(2)I] (Ar=4-F-C6H4, R = tBu) has been isolated and characterized by X-ray diffraction. The unprecedented ability of this RNC-ligated imidoyl-Pd complex to undergo reductive elimination at room temperature to give the amide in the p…

research product

THEORETICAL INSIGHTS ON O2 AND CO ADSORPTION ON NEUTRAL AND POSITIVELY CHARGED GOLD CLUSTERS

With the aim of understanding the elementary steps governing the oxidation of CO catalyzed by dispersed or supported gold nanoclusters, the adsorption of molecular species, such as O2 and CO, on model neutral and positively charged clusters (Au(n)(m+) n = 1, 9, and 13; m = 0, 1, and 3) has been studied using an ab initio approach. The computed structural and thermodynamic data related to the binding process show that molecular oxygen interacts better with neutral clusters, acting as an electron acceptor, while CO more strongly binds to positively charged species, thus acting as an electron donor.

research product

A DFT investigation of CO oxidation over neutral and cationic gold clusters

Abstract The interaction of CO and O 2 with neutral and positively charged Au 9 and Au 13 clusters was studied using Density Functional Theory. The aim was the understanding of the elementary steps of the low temperature activity of supported gold nanoparticles towards carbon monoxide combustion, that is, the oxidation of CO to CO 2 in presence of dioxygen molecules. The adsorption of a single CO molecule gives rise to a substantial electronic rearrangement on both neutral and cationic gold clusters. On the contrary, the adsorption of dioxygen produces an electron transfer from neutral gold clusters to the O 2 , while the interaction with cationic Au nanoparticles is simply electrostatic. C…

research product

CCDC 1485600: Experimental Crystal Structure Determination

Related Article: Luca A. Perego, Paul Fleurat-Lessard, Laurent El Kaïm, Ilaria Ciofini, Laurence Grimaud|2016|Chem.-Eur.J.|22|15491|doi:10.1002/chem.201602913

research product