0000000000656688

AUTHOR

Uriel N. Morzan

Short hydrogen bonds enhance nonaromatic protein-related fluorescence

Significance Intrinsic fluorescence of nonaromatic amino acids is a puzzling phenomenon with an enormous potential in biophotonic applications. The physical origins of this effect, however, remain elusive. Herein, we demonstrate how specific hydrogen bond networks can modulate fluorescence. We highlight the key role played by short hydrogen bonds, present in the protein structure, on the ensuing fluorescence. We provide detailed experimental and molecular evidence to explain these unusual nonaromatic optical properties. Our findings should benefit the design of novel optically active biomaterials for applications in biosensing and imaging.

research product

Short hydrogen bonds enhance non-aromatic protein-related fluorescence

AbstractFluorescence in biological systems is usually associated with the presence of aromatic groups. Here, we show that specific hydrogen bonding networks can significantly affect fluorescence employing a combined experimental and computational approach. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared to L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby signific…

research product

CCDC 1981551: Experimental Crystal Structure Determination

Related Article: Amberley D. Stephens, Muhammad Nawaz Qaisrani, Michael T. Ruggiero, Gonzalo Díaz Mirón, Uriel N. Morzan, Mariano C. González Lebrero, Saul T. E. Jones, Emiliano Poli, Andrew D. Bond, Philippa J. Woodhams, Elyse M. Kleist, Luca Grisanti, Ralph Gebauer, J. Axel Zeitler, Dan Credgington, Ali Hassanali, Gabriele S. Kaminski Schierle|2021|Proc.Nat.Acad.Sci.USA|118|e2020389118|doi:10.1073/pnas.2020389118

research product