0000000000656734

AUTHOR

Umberto Galietti

0000-0001-8725-5927

Analisi quantitativa dell'effetto termoelastico in materiali compositi CFRP

research product

Investigation on the influence of the surface resin rich layer on the thermoelastic signal from different composite laminate lay-ups

This work presents a set of experimental results based on the measured thermoelastic signal from GRP composite coupons adopting different lay-ups. A comparison is made with the thermoelastic signal predicted by two different analytical models: one based on the classical law of the thermoelastic effect for orthotropic materials, and the other based on a novel theory accounting for the presence of a resin layer on the external surface of the composite structure. The composite coupons were designed such to determine a significant difference in the predictions made by the two theoretical models. Experimental results have shown a far better match with the predictions based on the novel theory ac…

research product

A quantitative investigation on the thermoelastic effect of CFRP laminates

The thermoelastic effect on CFRP laminates with various lay-ups is investigated. A thick low crimp unidirectional fabric reinforcement is adopted. The measured thermoelastic signal is compared with predictions from two analytical models based on the meso-mechanical bulk properties of the lamina and on assuming a strain witness behaviour of the surface resin rich layer.

research product

A Quantitative Analysis of the Thermoelastic Effect in CFRP Composite Materials

:  In this study the thermoelastic signal from carbon fibre-reinforced plastic (CFRP) laminates is investigated. A comparison between the theoretical and experimental values of the thermoelastic signal is reported, with the theoretical predictions obtained from two different quantitative models. These models are based on the classic thermoelastic effect law extended to the case of orthotropic materials (by using the mesomechanical or bulk approach), and the modified law assuming that the surface resin-rich layer behaves as a strain witness of the laminate. It is found that the theoretical predictions of the two models can be strongly and differently influenced by the intrinsic orthotropy of…

research product