0000000000658154

AUTHOR

Agate V.

A Behavior-Based Intrusion Detection System Using Ensemble Learning Techniques

Intrusion Detection Systems (IDSs) play a key role in modern ICT security. Attacks detected and reported by IDSs are often analyzed by administrators who are tasked with countering the attack and minimizing its damage. Consequently, it is important that the alerts generated by the IDS are as detailed as possible. In this paper, we present a multi-layered behavior-based IDS using ensemble learning techniques for the classification of network attacks. Three widely adopted and appreciated models, i.e., Decision Trees, Random Forests, and Artificial Neural Networks, have been chosen to build the ensemble. To reduce the system response time, our solution is designed to immediately filter out tra…

research product

Anomaly Detection for Reoccurring Concept Drift in Smart Environments

Many crowdsensing applications today rely on learning algorithms applied to data streams to accurately classify information and events of interest in smart environments. Unfor-tunately, the statistical properties of the input data may change in unexpected ways. As a result, the definition of anomalous and normal data can vary over time and machine learning models may need to be re-trained incrementally. This problem is known as concept drift, and it has often been ignored by anomaly detection systems, resulting in significant performance degradation. In addition, the statistical distribution of past data often tends to repeat itself, and thus old learning models could be reused, avoiding co…

research product