Anomalous diffusion of polymers in supercooled melts near the glass transition
Two coarse-grained models for polymer chains in dense melts near the glass transition are investigated: the bond fluctuation lattice model, where long bonds are energetically favored, is studied by dynamic Monte Carlo simulation, and an off-lattice bead-spring model with Lennard-Jones forces between the beads is treated by Molecular Dynamics. We compare the time-dependence of the mean square displacements of both models, and show that they become very similar on mesoscopic scales (i.e., displacements larger than a bond length). The slowing down of motions near the glass transition is discussed in terms of the mode coupling theory and other concepts.