Flipping of alkylated DNA damage bridges base and nucleotide excision repair
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O6-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O6-methylguanine or cigarette-smoke-derived O6-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new A…