0000000000659599
AUTHOR
Friedhelm Meyer Auf Der Heide
Asynchronous Occlusion Culling on Heterogeneous PC Clusters for Distributed 3D Scenes
We present a parallel rendering system for heterogeneous PC clusters to visualize massive models. One single, powerful visualization node is supported by a group of backend nodes with weak graphics performance. While the visualization node renders the visible objects, the backend nodes asynchronously perform visibility tests and supply the front end with visible scene objects. The visualization node stores only currently visible objects in its memory, while the scene is distributed among the backend nodes’ memory without redundancy. To efficiently compute the occlusion tests in spite of that each backend node stores only a fraction of the original geometry, we complete the scene by adding h…
Scheduling shared continuous resources on many-cores
We consider the problem of scheduling a number of jobs on m identical processors sharing a continuously divisible resource. Each job j comes with a resource requirement rj∈[0,1]. The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of r_j, it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their processing speeds, have been studied under the term discrete-continuous scheduling. Known results are either very pessimistic or heuristic in nature. In this paper, …