0000000000659616
AUTHOR
Lucian Vinţan
Aspects Concerning SVM Method’s Scalability
In the last years the quantity of text documents is increasing continually and automatic document classification is an important challenge. In the text document classification the training step is essential in obtaining a good classifier. The quality of learning depends on the dimension of the training data. When working with huge learning data sets, problems regarding the training time that increases exponentially are occurring. In this paper we are presenting a method that allows working with huge data sets into the training step without increasing exponentially the training time and without significantly decreasing the classification accuracy.
Domain-Knowledge Optimized Simulated Annealing for Network-on-Chip Application Mapping
Network-on-Chip architectures are scalable on-chip interconnection networks. They replace the inefficient shared buses and are suitable for multicore and manycore systems. This paper presents an Optimized Simulated Annealing (OSA) algorithm for the Network-on-Chip application mapping problem. With OSA, the cores are implicitly and dynamically clustered using knowledge about communication demands. We show that OSA is a more feasible Simulated Annealing approach to NoC application mapping by comparing it with a general Simulated Annealing algorithm and a Branch and Bound algorithm, too. Using real applications we show that OSA is significantly faster than a general Simulated Annealing, withou…
Weights Space Exploration Using Genetic Algorithms for Meta-classifier in Text Document Classification
Part of speech tagging with Naïve Bayes methods
A Simulation Based Analysis of an Multi Objective Diffusive Load Balancing Algorithm
In this paper, we presented a further development of our research on developing an optimal software-hardware mapping framework. We used the Petri Net model of the complete hardware and software High Performance Computing (HPC) system running a Computational Fluid Dynamics (CFD) application, to simulate the behaviour of the proposed diffusive two level multi-objective load-balancing algorithm. We developed an meta-heuristic algorithm for generating an approximation of the Pareto-optimal set to be used as reference. The simulations showed the advantages of this algorithm over other diffusive algorithms: reduced computational and communication overhead and robustness due to low dependence on u…