0000000000659678

AUTHOR

Mark L. Lewis

0000-0001-9627-6922

p-Parts of character degrees and the index of the Fitting subgroup

Abstract In a solvable group G, if p 2 does not divide χ ( 1 ) for all χ ∈ Irr ( G ) , then we prove that | G : F ( G ) | p ≤ p 2 . This bound is best possible.

research product

p-parts of character degrees

research product

The number of lifts of a Brauer character with a normal vertex

AbstractIn this paper we examine the behavior of lifts of Brauer characters in p-solvable groups. In the main result, we show that if φ∈IBr(G) has a normal vertex Q and either p is odd or Q is abelian, then the number of lifts of φ is at most |Q:Q′|. As a corollary, we prove that if φ∈IBr(G) has an abelian vertex subgroup Q, then the number of lifts of φ in Irr(G) is at most |Q|.

research product

BOUNDING THE NUMBER OF IRREDUCIBLE CHARACTER DEGREES OF A FINITE GROUP IN TERMS OF THE LARGEST DEGREE

We conjecture that the number of irreducible character degrees of a finite group is bounded in terms of the number of prime factors (counting multiplicities) of the largest character degree. We prove that this conjecture holds when the largest character degree is prime and when the character degree graph is disconnected.

research product

A graph associated with the $\pi$-character degrees of a group

Let G be a group and $\pi$ be a set of primes. We consider the set ${\rm cd}^{\pi}(G)$ of character degrees of G that are divisible only by primes in $\pi$. In particular, we define $\Gamma^{\pi}(G)$ to be the graph whose vertex set is the set of primes dividing degrees in ${\rm cd}^{\pi}(G)$. There is an edge between p and q if pq divides a degree $a \in {\rm cd}^{\pi}(G)$. We show that if G is $\pi$-solvable, then $\Gamma^{\pi}(G)$ has at most two connected components.

research product

Invariant characters and coprime actions on finite nilpotent groups

Suppose that a group A acts via automorphisms on a nilpotent group G having coprime order. Given an A-invariant character \(\chi \in {\rm Irr}(G)\), we show that the A-primitive irreducible characters that induce \(\chi \) from an A-invariant subgroup of G all have equal degree. We use this result to obtain some information about the characters of groups of p-length 1.

research product

Transitive permutation groups in which all derangements are involutions

AbstractLet G be a transitive permutation group in which all derangements are involutions. We prove that G is either an elementary abelian 2-group or is a Frobenius group having an elementary abelian 2-group as kernel. We also consider the analogous problem for abstract groups, and we classify groups G with a proper subgroup H such that every element of G not conjugate to an element of H is an involution.

research product

Groups with exactly one irreducible character of degree divisible byp

Let [math] be a prime. We characterize those finite groups which have precisely one irreducible character of degree divisible by [math] .

research product