0000000000659679

AUTHOR

Albert Clop

showing 3 related works from this author

Analytic capacity and quasiconformal mappings with $W^{1,2}$ Beltrami coefficient

2008

We show that if $\phi$ is a quasiconformal mapping with compactly supported Beltrami coefficient in the Sobolev space $W^{1,2}$, then $\phi$ preserves sets with vanishing analytic capacity. It then follows that a compact set $E$ is removable for bounded analytic functions if and only if it is removable for bounded quasiregular mappings with compactly supported Beltrami coefficient in $W^{1,2}$.

Sobolev spaceQuasiconformal mappingComputer Science::GraphicsCompact spaceMathematics::Complex VariablesGeneral MathematicsBounded functionMathematical analysisAnalytic capacityAnalytic functionMathematicsMathematical Research Letters
researchProduct

Manifolds of quasiconformal mappings and the nonlinear Beltrami equation

2014

In this paper we show that the homeomorphic solutions to each nonlinear Beltrami equation $\partial_{\bar{z}} f = \mathcal{H}(z, \partial_{z} f)$ generate a two-dimensional manifold of quasiconformal mappings $\mathcal{F}_{\mathcal{H}} \subset W^{1,2}_{\mathrm{loc}}(\mathbb{C})$. Moreover, we show that under regularity assumptions on $\mathcal{H}$, the manifold $\mathcal{F}_{\mathcal{H}}$ defines the structure function $\mathcal{H}$ uniquely.

Pure mathematicsGeneral MathematicseducationMathematics::Analysis of PDEs01 natural sciencesBeltrami equationfunktioteoriaMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsComplex Variables (math.CV)30C62 (Primary) 35J60 35J46 (Secondary)MathematicsosittaisdifferentiaaliyhtälötPartial differential equationFunctional analysisMathematics - Complex Variables010102 general mathematicsStructure functionMathematics::Spectral Theory16. Peace & justiceManifold010101 applied mathematicsNonlinear systemmonistotAnalysisAnalysis of PDEs (math.AP)
researchProduct

Improved Hölder regularity for strongly elliptic PDEs

2019

We establish surprising improved Schauder regularity properties for solutions to the Leray-Lions divergence type equation in the plane. The results are achieved by studying the nonlinear Beltrami equation and making use of special new relations between these two equations. In particular, we show that solutions to an autonomous Beltrami equation enjoy a quantitative improved degree of H\"older regularity, higher than what is given by the classical exponent $1/K$.

Hölder regularityGeneral MathematicsMathematics::Analysis of PDEsElliptic pdes01 natural sciencesBeltrami equationMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsComplex Variables (math.CV)Divergence (statistics)MathematicsDegree (graph theory)Mathematics - Complex VariablesPlane (geometry)Applied Mathematics010102 general mathematicsMathematical analysisQuasiconformal mappingsElliptic equations30C62 (Primary) 35J60 35B65 (Secondary)010101 applied mathematicsNonlinear systemType equationBeltrami equationExponentAnalysis of PDEs (math.AP)
researchProduct