0000000000660184
AUTHOR
Sylvain Picaud
Adsorption of CO and N 2 molecules at the surface of solid water. A grand canonical Monte Carlo study
International audience; The adsorption of carbon monoxide and nitrogen molecules at the surface of four forms of solid water is investigated by means of grand canonical Monte Carlo simulations. The trapping ability of crystalline Ih and low-density amorphous ices, along with clathrate hy-drates of structures I and II, are compared at temperatures relevant for astrophysics. It is shown that, when considering a gas phase that contains mixtures of carbon monoxide and nitrogen, the trapping of carbon monoxide is favored with respect to that of nitrogen at the surface of all solids, irrespective of the temperature. The results of the calculations also indicate that some amounts of molecules can …
A Grand Canonical Monte Carlo Study of the N2, CO, and Mixed N2–CO Clathrate Hydrates
In this paper we report the use of Grand Canonical Monte Carlo (GCMC) simulations to characterize the competitive trapping of CO and N2 molecules into clathrates, for various gas compositions in the temperature range from 50 to 150 K. The simulations evidence a preferential trapping of CO with respect to N2. This leads to the formation of clathrates that are preferentially filled with CO at equilibrium, irrespective of the composition of the gas phase, the fugacity, and the temperature. Moreover, the results of the simulations show that the small cages of the clathrate structure are always filled first, independent of either the guest structure or the temperature. This issue has been associ…
Adsorption of organic compounds at the surface of Enceladus' ice grains. A grand canonical Monte Carlo simulation study
International audience; In this paper, we characterise the adsorption of ethylene, propanol and hexanal molecules on crystalline ice by grand canonical Monte Carlo simulations performed at 236 K, a temperature which is typical of some Enceladus’ environments. We show that at low coverage of the ice surface, the adsorption of propanol and hexanal is driven by the interaction of these molecules with the ice phase and, as a consequence, the adsorbed molecules lie more or less parallel to the ice surface. On the other hand, upon saturation, the adsorbate–adsorbate interactions become more and more important and the molecules tend to become tilted with respect to the surface, the aliphatic chain…
Constraints on the Volatile Enrichments in HD189733b from Internal Structure Models
International audience
Molecular Selectivity of CO–N 2 Mixed Hydrates: Raman Spectroscopy and GCMC Studies
This paper reports a novel quantitative investigation concerning the CO selectivity properties for mixed CO–N2 hydrates. The study was developed by combining Raman scattering experiments and grand ...
A similar to 32-70 K FORMATION TEMPERATURE RANGE FOR THE ICE GRAINS AGGLOMERATED BY COMET 67 P/CHURYUMOV-GERASIMENKO
Grand Canonical Monte Carlo simulations are used to reproduce the N$_2$/CO ratio ranging between 1.7 $\times$ 10$^{-3}$ and 1.6 $\times$ 10$^{-2}$ observed {\it in situ} in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the Rosetta spacecraft, assuming that this body has been agglomerated from clathrates in the protosolar nebula. Simulations are done using an elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple guest clathrate formed from a gas mixture of CO and N$_2$ in proportions corresponding to those expected for the protosolar nebula. By assuming that 67P/Churyumov-Gerasimenko agglom…
Martian zeolites as a source of atmospheric methane
The origin of the martian methane is still poorly understood. A plausible explanation is that methane could have been produced either by hydrothermal alteration of basaltic crust or by serpentinization of ultramafic rocks producing hydrogen and reducing crustal carbon into methane. Once formed, methane storage on Mars is commonly associated with the presence of hidden clathrate reservoirs. Here, we alternatively suggest that chabazite and clinoptilolite, which belong to the family of zeolites, may form a plausible storage reservoir of methane in the martian subsurface. Because of the existence of many volcanic terrains, zeolites are expected to be widespread on Mars and their Global Equival…
Molecular Selectivity of CH 4 –C 2 H 6 Mixed Hydrates: A GCMC Study
International audience; In this paper, we report the first grand canonical Monte Carlo simulation study aiming at characterizing the competitive trapping of CH4 and C2H6 molecules into clathrate hydrates under temperature conditions typical of those encountered at the surface of Titan. Various compositions of the fluid in contact with the clathrate phase have been considered in the simulations, including pure methane, pure ethane, and mixed fluids made of various methane/ethane ratios. The trapping isotherms obtained from the simulations clearly show that ethane molecules can be enclathrated at lower pressures than methane molecules. In addition, they provide evidence that the methane molec…