0000000000660545
AUTHOR
Gerald Brönstrup
Ultrasensitive Silicon Nanowire for Real-World Gas Sensing: Noninvasive Diagnosis of Cancer from Breath Volatolome
We report on an ultrasensitive, molecularly modified silicon nanowire field effect transistor that brings together the lock-and-key and cross-reactive sensing worlds for the diagnosis of (gastric) cancer from exhaled volatolome. The sensor is able to selectively detect volatile organic compounds (VOCs) that are linked with gastric cancer conditions in exhaled breath and to discriminate them from environmental VOCs that exist in exhaled breath samples but do not relate to the gastric cancer per se. Using breath samples collected from actual patients with gastric cancer and from volunteers who do not have cancer, blind analysis validated the ability of the reported sensor to discriminate betw…
Silicon Nanowire Sensors Enable Diagnosis of Patients via Exhaled Breath
Two of the biggest challenges in medicine today are the need to detect diseases in a noninvasive manner and to differentiate between patients using a single diagnostic tool. The current study targets these two challenges by developing a molecularly modified silicon nanowire field effect transistor (SiNW FET) and showing its use in the detection and classification of many disease breathprints (lung cancer, gastric cancer, asthma, and chronic obstructive pulmonary disease). The fabricated SiNW FETs are characterized and optimized based on a training set that correlate their sensitivity and selectivity toward volatile organic compounds (VOCs) linked with the various disease breathprints. The b…