0000000000660807
AUTHOR
Irene Marzoli
Array of planar Penning traps as a nuclear magnetic resonance molecule for quantum computation
An array of planar Penning traps, holding single electrons, can realize an artificial molecule suitable for NMR-like quantum information processing. The effective spin-spin coupling is accomplished by applying a magnetic field gradient, combined to the Coulomb interaction acting between the charged particles. The system lends itself to scalability, since the same substrate can easily accommodate an arbitrary number of traps. Moreover, the coupling strength is tunable and under experimental control. Our theoretical predictions take into account a realistic setting, within the reach of current technology.
Effects of emergency remote instruction during the COVID-19 pandemic on university physics students in Italy
We surveyed a convenience sample of 362 Italian university physics students, asking them to retrospectively assess their experience of emergency remote instruction due to the COVID-19 outbreak. We looked at their psychological well being, motivation for physics, academic orientation, attitude towards physics and physicists, and tried to link these factors to their overall perception of the online instruction. Our results show a general appreciation for the organization and effectiveness of online courses. However, online teaching negatively impacted on engagement and interaction between peers and with the instructors. Only 22% of students in our sample complained of the psychological distre…
Experimental and theoretical challenges for the trapped electron quantum computer
We discuss quantum information processing with trapped electrons. After recalling the operation principle of planar Penning traps we sketch the experimental conditions to load, cool and detect single electrons. Here we present a detailed investigation of a scalable scheme including feasibility studies and the analysis of all important elements, relevant for the experimental stage. On the theoretical side, we discuss different methods to couple electron qubits. We estimate the relevant qubit coherence times and draw implications for the experimental setting. A critical assessment of quantum information processing with trapped electrons is concluding the article.