Three-dimensional splitting dynamics of giant vortices in Bose-Einstein condensates
We study the splitting dynamics of giant vortices in dilute Bose-Einstein condensates by numerically integrating the three-dimensional Gross-Pitaevskii equation in time. By taking advantage of tetrahedral tiling in the spatial discretization, we decrease the error and increase the reliability of the numerical method. An extensive survey of vortex splitting symmetries is presented for different aspect ratios of the harmonic trapping potential. The symmetries of the splitting patterns observed in the simulated dynamics are found to be in good agreement with predictions obtained by solving the dominant dynamical instabilities from the corresponding Bogoliubov equations. Furthermore, we observe…
GPU-accelerated time integration of Gross-Pitaevskii equation with discrete exterior calculus
The quantized vortices in superfluids are modeled by the Gross-Pitaevskii equation whose numerical time integration is instrumental in the physics studies of such systems. In this paper, we present a reliable numerical method and its efficient GPU-accelerated implementation for the time integration of the three-dimensional Gross-Pitaevskii equation. The method is based on discrete exterior calculus which allows us the usage of more versatile spatial discretization than traditional finite difference and spectral methods are applicable to. We discretize the problem using six different natural crystal structures and observe the correct choices of spatial tiling to decrease the truncation error…