0000000000660935
AUTHOR
Andreas Prinzen
Recess photomask contact lithography and the fabrication of coupled silicon photonic and plasmonic waveguide switches
Display Omitted A lithography technique capable of printing submicron-sized features inside deep cavities is presented.A so-called recess photomask adapted to the wafer's topography is employed.Based on a standard mask aligner, Recess Photomask Contact Lithography has moderate cost.Its efficiency for a photonic/plasmonic switch application was demonstrated experimentally.The technique is extensible to any design and to wafers with multiple level recesses. A novel lithographic method is presented, based on the use of a mask aligner in the contact mode with a modified photomask, the so-called recess photomask; its goal is the printing of submicron-sized patterns into deep cavities of a chip, …
Ultracompact and Low-Power Plasmonic MZI Switch Using Cyclomer Loading
We present a $2\times 2$ hybrid silicon-plasmonic thermooptic (TO) asymmetric Mach–Zehnder interferometric (MZI) switch having only 40- $\mu \text{m}$ long active cyclomer-loaded plasmonic phase arms. It requires less than 12 mW of power and has 2/5- $\mu \text{s}$ ON/OFF-times, respectively, a modulation depth higher than 90% and a 13.2-dB extinction ratio. Data traffic evaluation has been carried out using 10-Gb/s nonreturn-to-zero streams, yielding error-free operation at both switching states with power penalties ranging between 1 to 4.8 dB. The use of the cyclomer loading having a higher TO coefficient than polymethyl methacrylate has resulted to the smallest footprint among plasmonic …