0000000000661125
AUTHOR
Marco Cannone
Existence and uniqueness for the Prandtl equations
International audience; Under the hypothesis of analyticity of the data with respect to the tangential variable we prove the existence and uniqueness of the mild solution of Prandtl boundary layer equation. This can be considered an improvement of the results of [8] as we do not require analyticity with respect to the normal variable. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
On the Prandtl Boundary Layer Equations in Presence of Corner Singularities
In this paper we prove the well-posedness of the Prandtl boundary layer equations on a periodic strip when the initial and the boundary data are not assigned to be compatible.
Well-posedness of the boundary layer equations
We consider the mild solutions of the Prandtl equations on the half space. Requiring analyticity only with respect to the tangential variable, we prove the short time existence and the uniqueness of the solution in the proper function space. Theproof is achieved applying the abstract Cauchy--Kowalewski theorem to the boundary layer equations once the convection-diffusion operator is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math. Phys., 192 (1998), pp. 433--461], as we do not require analyticity of the data with respect to the normal variable.
Well-posedness of Prandtl equations with non-compatible data
In this paper we shall be concerned with Prandtl's equations with incompatible data, i.e. with initial data that, in general, do not fulfil the boundary conditions imposed on the solution. Under the hypothesis of analyticity in the streamwise variable, we shall prove that Prandtl's equations, on the half-plane or on the half-space, are well posed for a short time.