0000000000661161

AUTHOR

Cosette Abdallah

showing 9 related works from this author

The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis

2014

International audience; Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in dep…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesGeLC-MS/MS[SDV.BIO]Life Sciences [q-bio]/BiotechnologyProteomeBiophysicsBiological Transport ActiveRoot membrane proteomeBiochemistrySpectral countingFungal ProteinsGlomeromycotaSymbiosisPeriarbuscular membraneMycorrhizaeMedicago truncatulaBotanyEndomembrane systemMycorrhizaArbuscular mycorrhizaRhizophagus irregularisSymbiosisPlant Proteins2. Zero hungerbiologyfungiMembrane Proteins15. Life on landbiology.organism_classificationMedicago truncatulaCell biologyMembrane proteinProteomeSignal Transduction
researchProduct

Technical improvements for analysis of récalcitrant proteins by LC-MS

2010

[SDV] Life Sciences [q-bio]
researchProduct

Technical improvements for analysis of recalcitrant proteins by LC-MS : the myccorhiza responsive membrane proteome as a case study

2012

Arbuscular mycorrhizas (AM) are widespread symbiotic associations between plant roots and AM fungi. Deep membrane alterations are the foremost morphological changes occurring in the host plant in response to AM symbiosis. Two-dimensional gel electrophoresis (2-DE) is the workhorse method in AM proteomics. Membrane proteins are under-represented in 2-DE because of their hydrophobicity, low abundance, and precipitation at their isoelectric point, thereby few are the identified membrane proteins involved in sustaining the AM symbiosis. Membrane proteomics is still challenging due to 2-DE related shortcomings, however latest trends and advancements in mass spectrometry (MS)-based quantitative p…

Protéomique sans marquageSymbiose mycorhizienne à arbuscules[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyMedicago truncatula[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyArbuscular mycorrhizas[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyProtéomique hors gelProtéines membranaires[SDV.BC] Life Sciences [q-bio]/Cellular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology
researchProduct

Label-free 1-DE-LC-MS/MS and iTRAQ-OFFGEL-LC-MS/MS to identify arbuscular mycorrhiza-related membrane proteins.

2011

[SDV] Life Sciences [q-bio]
researchProduct

Functional analysis of the membrane proteome of Medicago truncatula roots upon colonization by the arbuscular mycorrhizal fungus Glomus irregulare

2010

International audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]
researchProduct

Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence

2013

'Summary' 26 I. 'Casting for a scenario' 26 II. 'Nominees for a preliminary role' 27 III. 'Nominees for a leading role' 32 IV. 'Future artists' 37   'Acknowledgements' 38   References 38 Summary The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a …

0106 biological sciencesLASER MICRODISSECTIONPhysiologycarbon (C)phosphorus (P)[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesPlant RootsGlomeromycotaMEDICAGO-TRUNCATULA ROOTSRNA interferenceMycorrhizaeLOTUS-JAPONICUSPlastidsMycorrhizaFUNGUS GLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSIONGenetics0303 health sciencesGene knockdownFungal proteinPHOSPHATE TRANSPORTERarbuscular mycorrhizaCADMIUM STRESS ALLEVIATIONfood and beveragesSTRIGOLACTONE BIOSYNTHESISArbuscular mycorrhizaEPIDERMAL-CELLSProtein Transportmembranes[SDE]Environmental SciencesSignal TransductionINTRACELLULAR ACCOMMODATIONHyphaeBiologybiotrophyPhosphatesFungal Proteins03 medical and health sciencesSymbiosisBotanyGene silencing[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosis030304 developmental biologyfungi15. Life on landbiology.organism_classificationCarbonsilencing010606 plant biology & botany
researchProduct

Technical improvements for analysis of recalcitrant proteins by LC-MS : the mycorrhiza responsive membrane proteome as a case study

2012

Arbuscular mycorrhizas (AM) are widespread symbiotic associations between plant roots and AM fungi. Deep membrane alterations are the foremost morphological changes occurring in the host plant in response to AM symbiosis. Two-dimensional gel electrophoresis (2-DE) is the workhorse method in AM proteomics. Membrane proteins are under-represented in 2-DE because of their hydrophobicity, low abundance, and precipitation at their isoelectric point, thereby few are the identified membrane proteins involved in sustaining the AM symbiosis. Membrane proteomics is still challenging due to 2-DE related shortcomings, however latest trends and advancements in mass spectrometry (MS)-based quantitative p…

protéomique hors gel[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesprotéines membranaires[SDV.BV] Life Sciences [q-bio]/Vegetal Biologymedicago truncatulasymbiose mycorhizienne à arbusculesprotéomique sans marquage.
researchProduct

Vers l'étude quantitative et fonctionnelle des protéomes membranaires des racines mis en jeu au cours de la symbiose mycorhizienne à arbuscules de Me…

2010

[SDV] Life Sciences [q-bio]
researchProduct

Label-free 1-DE-LC-MS/MS to identify arbuscular mycorrhiza-related membrane proteins

2012

Deep changes in the shape and number of organelles, together with profound modifications in various membrane compartments, are induced within arbuscular mycorrhizal (AM) symbiosis. In this context, to investigate the membrane-associated proteins that are regulated in the model interaction Medicago truncatula – Rhizophagus irregularis, label-free 1DE-LC-MS/MS approach has been employed as alternative to two-dimensional gel electrophoresis. The existence of a correlation between protein abundance and peak areas or number of MS/MS spectra has widened the choice of label-free quantitative proteomics. The results highlighted microsomal protein candidates that could be involved in the symbiotic e…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesroot membrane proteomespectral counting[SDV]Life Sciences [q-bio]fungi[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologymedicago truncatularhizophagus irregularis
researchProduct