0000000000661895

AUTHOR

Christoph Leuschner

Tropical Andean forests are highly susceptible to nutrient inputs--rapid effects of experimental N and P addition to an Ecuadorian montane forest.

Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha -1 yr -1) and P (10 kg ha -1 yr -1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some pro…

research product

Harnessing the biodiversity value of Central and Eastern European farmland

A large proportion of European biodiversity today depends on habitat provided by low‐intensity farming practices, yet this resource is declining as European agriculture intensifies. Within the European Union, particularly the central and eastern new member states have retained relatively large areas of species‐rich farmland, but despite increased investment in nature conservation here in recent years, farmland biodiversity trends appear to be worsening. Although the high biodiversity value of Central and Eastern European farmland has long been reported, the amount of research in the international literature focused on farmland biodiversity in this region remains comparatively ti…

research product

Root-induced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and CO2) of a temperate deciduous forest soil

Through their leaf litter and throughfall water, tree species can have a pronounced influence on soil chemistry. However, there is little knowledge of species-specific root effects on greenhouse gas fluxes between forest soils and the atmosphere. By growing saplings of beech (Fagus sylvatica) and ash (Fraxinus excelsior) in monoculture or mixture at defined atmospheric and soil conditions in rhizotrons, we tested four hypotheses related to potential root-induced tree species effects on the uptake of CH4 and the emission of N2O and CO2 from the soil. This design excluded putative effects of leaf litter mineralisation on trace gas fluxes. Gas fluxes were measured biweekly using the closed cha…

research product