High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification
The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cas…
Benchmark Thermochemistry of the Hydroperoxyl Radical
A theoretical estimation of the enthalpy of formation for the hydroperoxyl radical is presented. These results are based on CCSD(T)/aug-cc-pCV5Z calculations extrapolated to the basis-set limit with additional corrections. Anharmonic vibrational zero-point energies, scalar relativistic, spin -orbit coupling, and diagonal BornOppenheimer corrections are further used to correct the extrapolated term energies, as well as various empirical corrections that account for correlation effects not treated at the CCSD(T) level. We estimate that ¢fH° ) 3.66 ( 0.10 kcal mol -1 (¢fH° ) 2.96 ( 0.10 kcal mol -1 ) using several reaction schemes. Significantly, it appears to be necessary to include effects o…
HEAT: High accuracy extrapolated ab initio thermochemistry.
A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and mole…