0000000000662082
AUTHOR
Brailey Sims
Fixed point theory for almost convex functions
Traditionally, metric fixed point theory has sought classes of spaces in which a given type of mapping (nonexpansive, assymptotically or generalized nonexpansive, uniformly Lipschitz, etc.) from a nonempty weakly compact convex set into itself always has a fixed point. In some situations the class of space is determined by the application while there is some degree of freedom in constructing the map to be used. With this in mind we seek to relax the conditions on the space by considering more restrictive types of mappings.
Property (M) and the weak fixed point property
It is shown that in Banach spaces with the property (M) of Kalton, nonexpansive self mappings of nonempty weakly compact convex sets necessarily have fixed points. The stability of this conclusion under renormings is examined and conditions for such spaces to have weak normal structure are considered.