0000000000662086

AUTHOR

Natalia V. Vassilyeva

showing 2 related works from this author

Fast Polymeric Functionalization Approach for the Covalent Coating of MoS2 Layers

2021

We present the covalent coating of chemically exfoliated molybdenum disulfide (MoS2) based on the polymerization of functional acryl molecules. The method relies on the efficient diazonium anchoring reaction to provoke the in situ radical polymerization and covalent adhesion of functional coatings. In particular, we successfully implement hydrophobicity on the exfoliated MoS2 in a direct, fast, and quantitative synthetic approach. The covalent functionalization is proved by multiple techniques including X-ray photoelectron spectroscopy and TGA-MS. This approach represents a simple and general protocol to reach dense and homogeneous functional coatings on 2D materials.

Materials scienceRadical polymerizationAdhesionMetalls de transicióengineering.materialchemistry.chemical_compoundchemistryCoatingChemical engineeringPolymerizationCovalent bondengineeringSurface modificationMoleculeGeneral Materials ScienceMaterialsMolybdenum disulfideACS Applied Materials & Interfaces
researchProduct

Low-dimensional non-toxic A 3 Bi 2 X 9 compounds synthesized by a dry mechanochemical route with tunable visible photoluminescence at room temperature

2019

We have synthesized fifteen inorganic and hybrid organic-inorganic non-toxic A3Bi2X9 compounds (A = K+, Rb+, Cs+, CH3NH3+ and HC(NH2)2+; X = I−, Br−, Cl−) through dry mechanochemistry. We demonstrate that this synthetic method is very well suited to prepare compounds from poorly soluble precursors, allowing thus the preparation of so far unreported compounds. X-ray diffraction analysis demonstrates the high crystallinity of the so-formed ternary bismuth halides. Furthermore, we show that, through substitution of the A-cation and X-anion, the bandgap of these compounds can be tuned to absorb throughout the whole visible spectrum. As-prepared powders of Cs3Bi2Br9 and Cs3Bi2I9 without any pass…

PhotoluminescenceMaterials scienceBand gapHalidechemistry.chemical_element02 engineering and technologyGeneral ChemistryQuímica010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesBismuthCrystallinitychemistryMechanochemistryMaterials Chemistry0210 nano-technologyTernary operationMaterialsVisible spectrumJournal of Materials Chemistry C
researchProduct