0000000000662171

AUTHOR

Ville Kivioja

Tonaalisuus Pehr Henrik Nordgrenin 2. viulukonsertossa : sävelluokkajakauman tilastollinen analyysi

research product

Isometries of nilpotent metric groups

We consider Lie groups equipped with arbitrary distances. We only assume that the distance is left-invariant and induces the manifold topology. For brevity, we call such object metric Lie groups. Apart from Riemannian Lie groups, distinguished examples are sub-Riemannian Lie groups and, in particular, Carnot groups equipped with Carnot-Carath\'eodory distances. We study the regularity of isometries, i.e., distance-preserving homeomorphisms. Our first result is the analyticity of such maps between metric Lie groups. The second result is that if two metric Lie groups are connected and nilpotent then every isometry between the groups is the composition of a left translation and an isomorphism.…

research product

Affine decomposition of isometries in nilpotent Lie groups

Tässä työssä esitetään uusi tulos koskien isometrioiden säännöllisyyttä nilpotenttien yhtenäisten metristen Lien ryhmien välillä. Termillä metrinen Lien ryhmä tarkoitamme Lien ryhmää, joka on varustettu etäisyysfunktiolla siten, että ryhmän (vasen) siirtokuvaus on isometria, ja etäisyysfunktio indusoi topologian, joka Lien ryhmällä on monistona alun perin olemassa. Todistamme, että isometriat tässä tilanteessa ovat välttämättä affiinikuvauksia: jokainen isometria voidaan esittää yhdistettynä kuvauksena siirrosta ja isomorfismista. Tämän seurauksena kaksi isometrista ryhmää ovat välttämättä isomorfiset. Klassisesti isometrioiden lineaariaffiinisuus on…

research product

Metric equivalences of Heintze groups and applications to classifications in low dimension

We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus we take steps towards determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4, and for the subclass of groups of polynomial growth in dimension 5.

research product