0000000000667140

AUTHOR

A. M. Stoneham

Modelling of silver adhesion on MgO(100) surface with defects

We show how surface defects (especially Fs 0 and Vs 0 centres) can play a major role in the adhesion of Ag (at 1:4 and 1:1 coverages) on the MgO(100) surface. Our calculations use a periodic (slab) model and an ab initio Hartree-Fock approach with a posteriori electron correlation corrections. We are able to analyse the interatomic bond populations, effective charges and multipole moments of ions, in combination with the interface binding energy and the equilibrium distances. Both surface defects cause strong redistributions of the electron density which increase the binding energy of metal atoms by more than an order of magnitude. This implies radiation-induced strengthening of metal adhes…

research product

Ab InitioModeling of Metal Adhesion on Oxide Surfaces with Defects

Our ab initio studies show that surface defects cause redistribution of the electron density which can increase substantially the binding energy of metal atoms to oxide surfaces. The results for electron $({F}_{s}^{0})$ and hole $({V}_{s}^{0})$ centers in the adhesion of Ag atoms (at 1:4 and 1:1 coverages) to a MgO(100) surface, combined with previous studies for charged defects, support earlier ideas of the mechanism of radiation-enhanced adhesion of nonreactive metals on oxide substrates. The results suggest that some optical control of adhesion energies is possible through charge transfer.

research product

The kinetic MC modelling of reversible pattern formation in initial stages of thin metallic film growth on crystalline substrates

Abstract The results of kinetic MC simulations of the reversible pattern formation during the adsorption of mobile metal atoms on crystalline substrates are discussed. Pattern formation, simulated for submonolayer metal coverage, is characterized in terms of the joint correlation functions for a spatial distribution of adsorbed atoms. A wide range of situations, from the almost irreversible to strongly reversible regimes, is simulated. We demonstrate that the patterns obtained are defined by a key dimensionless parameter: the ratio of the mutual attraction energy between atoms to the substrate temperature. Our ab initio calculations for the nearest Ag–Ag adsorbate atom interaction on an MgO…

research product