0000000000667388
AUTHOR
Peter Sajonz
Influence of Thermal Annealing on the Thermodynamic and Mass-Transfer Kinetic Properties of d- and l-Phenylalanine Anilide on Imprinted Polymeric Stationary Phases.
An investigation of the material, chromatographic, thermodynamic, and kinetic properties of thermally treated (i.e., annealed) polymeric stationary phases imprinted with l-phenylalanine anilide (l-PA) was carried out. The imprinting procedure of the solid phase used in this study was the same as for the untreated imprinted stationary phase studied previously. However, after polymerization, these new stationary phases were treated at elevated temperatures (50, 120, 140, and 160 °C) for 24 h. The treatment at 120 and 140 °C led to a larger decrease in the retention of l-PA than that of d-PA. The polymer treated at 160 °C could no longer resolve the d,l-PA racemate. The heat treatments were ac…
Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase
The adsorption isotherms of d- and l-phenylalanine anilide (PA) on an l-phenylalanine anilide imprinted stationary phase have been determined using staircase frontal analysis. An aqueous buffer–organic solvent mixture has been used as mobile phase. The measurements were done at temperatures of 40, 50, 60 and 70°C for sample concentrations ranging between 5·10−4 to 1 g/l. It was found that the adsorption data fit well to both the Freundlich and the Bi-Langmuir isotherm models. Examination of the best values of the numerical coefficients of the Bi-Langmuir model shows that the site class representing the binding sites with the highest binding energy exhibits a very low saturation capacity for…