0000000000667491

AUTHOR

Antonella Di Francesco

showing 3 related works from this author

New Bioactive Peptides from the Mediterranean Seagrass Posidonia oceanica (L.) Delile and Their Impact on Antimicrobial Activity and Apoptosis of Hum…

2023

The demand for new molecules to counter bacterial resistance to antibiotics and tumor cell resistance is increasingly pressing. The Mediterranean seagrass Posidonia oceanica is considered a promising source of new bioactive molecules. Polypeptide-enriched fractions of rhizomes and green leaves of the seagrass were tested against Gram-positive (e.g., Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, Escherichia coli), as well as towards the yeast Candida albicans. The aforementioned extracts showed indicative MIC values, ranging from 1.61 μg/mL to 7.5 μg/mL, against the selected pathogens. Peptide fractions were further analyzed thr…

antibiotic resistanceantimicrobial peptideOrganic ChemistryGeneral Medicineantibiotic resistance; drug-resistant bacteria; antimicrobial peptides; anticancer peptides; marine seagrasses; computational peptide designCatalysisanticancer peptideComputer Science ApplicationsInorganic Chemistrymarine seagrassedrug-resistant bacteriaPhysical and Theoretical Chemistrycomputational peptide designMolecular BiologySpectroscopyInternational Journal of Molecular Sciences
researchProduct

A Novel Peptide with Antifungal Activity from Red Swamp Crayfish Procambarus clarkii

2022

The defense system of freshwater crayfish Procambarus clarkii as a diversified source of bioactive molecules with antimicrobial properties was studied. Antimicrobial activity of two polypeptide-enriched extracts obtained from hemocytes and hemolymph of P. clarkii were assessed against Gram positive (Staphylococcus aureus, Enterococcus faecalis) and Gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria and toward the yeast Candida albicans. The two peptide fractions showed interesting MIC values (ranging from 11 to 700 μg/mL) against all tested pathogens. Polypeptide-enriched extracts were further investigated using a high-resolution mass spectrometry and database search and 14 n…

Microbiology (medical)Infectious Diseasescrustacean antimicrobial peptides; antibiotic resistant strains; high-resolution mass spectrometry; antibiofilm activity; <i>Candida albicans</i>Candida albicansantibiofilm activityPharmacology (medical)crustacean antimicrobial peptideshigh-resolution mass spectrometryGeneral Pharmacology Toxicology and PharmaceuticsBiochemistryMicrobiologyantibiotic resistant strains
researchProduct

Identification of New Antimicrobial Peptides from Mediterranean Medical Plant Charybdis pancration (Steinh.) Speta

2020

The present work was designed to identify and characterize novel antimicrobial peptides (AMPs) from Charybdis pancration (Steinh.) Speta, previously named Urginea maritima, is a Mediterranean plant, well-known for its biological properties in traditional medicine. Polypeptide-enriched extracts from different parts of the plant (roots, leaves and bulb), never studied before, were tested against two relevant pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. With the aim of identifying novel natural AMPs, peptide fraction displaying antimicrobial activity (the bulb) that showed minimum inhibitory concentration (MICs) equal to 30 &micro

0301 basic medicineMicrobiology (medical)Charybdis030106 microbiologyAntimicrobial peptides) SpetaSettore BIO/05 - ZoologiatemporinPeptidemedicine.disease_causeSettore BIO/19 - Microbiologia GeneraleBiochemistryMicrobiologyMicrobiologyantibiotic resistant strains03 medical and health sciencesMinimum inhibitory concentrationAntibiotic resistancemedicinePharmacology (medical)high-resolution mass spectrometryGeneral Pharmacology Toxicology and Pharmaceuticsplant defensinschemistry.chemical_classificationbiologyPseudomonas aeruginosaantimicrobial peptides from plantCharybdis pancration (Steinh.) SpetaSettore BIO/02 - Botanica Sistematicalcsh:RM1-950temporinsbiology.organism_classificationAntimicrobialplant defensinmolecular dynamicslcsh:Therapeutics. Pharmacology030104 developmental biologyInfectious DiseaseschemistryStaphylococcus aureusCharybdis pancration (Steinhantimicrobial peptides from plants<i>Charybdis pancration</i> (Steinh.) Spetaantibiotic resistant strainAntibiotics
researchProduct