Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature
Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a YIG sphere coupled strongly to a microwave cavity over the full temperature range from $290\,\mathrm{K}$ down to $30\,\mathrm{mK}$. The cavity-magnon polaritons are studied from the classical to the quantum regime where the thermal energy is less than one resonant microwave quanta, i.e. at temperatures below $1\,\mathrm{K}$. We compare the temperature dependence of the coupling strength $g_{\rm{eff}}(T)$, describing the streng…