0000000000667736

AUTHOR

F. Fidecaro

showing 62 related works from this author

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

2021

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

binary: orbitneutron star: binaryPhysics and Astronomy (miscellaneous)Astronomybinary [neutron star]AstrophysicsGravitational Waves; LIGO (Observatory); Neutron Stars01 natural sciencesneutron starsGeneral Relativity and Quantum CosmologyMonte Carlo: Markov chainPhysics Particles & Fieldsbinary starsbinary systemsBinary SystemsLIGOgravitational waveQCQBpulsarastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySettore FIS/03Physicsorbit [binary]General relativityPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenabinary stardata analysis methodsensitivity [detector]General relativitygr-qcfrequency [modulation]Populationneutron star: spinFOS: Physical sciencesalternative theories of gravityMarkov chain [Monte Carlo]General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational Waves Neutron Stars Binary Systems LIGO VirgoLIGO (Observatory)emission [gravitational radiation]Pulsarbinary: coalescence0103 physical sciencesBinary starddc:530spin [neutron star]background [gravitational radiation]010306 general physicseducationSTFCOrbital elementsGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundmodulation: frequencyRCUKNeutron StarsLIGOgravitational radiation detectordetector: sensitivityNeutron starVIRGOgravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]binary stars; neutron stars
researchProduct

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

2018

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…

AstronomyTestingdetectionGeneral Physics and AstronomyEFFICIENTTESTING RELATIVISTIC GRAVITYTensorsSpectral shapes01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational wave backgroundEnergy densityTOOLQCComputingMilieux_MISCELLANEOUSstochastic modelMathematical physicsQBPhysics[PHYS]Physics [physics]Stochastic systemsGravitational effectsarticleVectorsPolarization (waves)gravitational wavesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsGeneral RelativityCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitygr-qcFOS: Physical sciencesexperimental studies of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesRelativityReference frequencyPhysics and Astronomy (all)General Relativity and Quantum CosmologyTheory of relativityScalar modesTests of general relativity0103 physical sciencesAdvanced LIGOddc:530Tensor010306 general physicsSTFCGravitational Wavespolarization010308 nuclear & particles physicsGravitational waveRCUKAstrophysical sourcesLIGOPhysics and AstronomygravitationRADIATIONStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyGravitational Waves Stochastic Background Advanced LIGO
researchProduct

Search for contact interactions in the reactionse + e −→l + l − ande + e −→γγ

1993

Contact interactions are searched for using the differential cross sections for the reactions e + e -→ e + e -, e + e -→ µ + µ -, e + e -→ τ + τ - and e + e -→γγ measured at 12 energies around the Z peak and corresponding to about 20 pb-1 of cumulated luminosity. Four-fermion contact term models assuming various chiralities of lepton currents are fitted to the lepton data and lower limits on the energy scale Λ of such terms are set at 95% c.l. The limits vary in the range 0.9 4.7 TeV, depending on the model and on the lepton flavour. The eeγγ contact terms are searched for assuming various chiralities. Limits on the energy scale Λ between 79 and 130 GeV are extracted from the data. The resu…

PhysicsRange (particle radiation)Particle physicsPhysics and Astronomy (miscellaneous)PhysicsElectron–positron annihilationHigh Energy Physics::PhenomenologyElementary particleLuminosityNuclear physicsALEPH ExperimentHigh Energy Physics::ExperimentField theory (psychology)Quantum field theoryEngineering (miscellaneous)ALEPH experimentLepton
researchProduct

Search for neutral Higgs bosons from supersymmetry in Z decays

1990

The light scalar Higgs boson h and the pseudoscalar Higgs boson A of the minimal supersymmetric standard model have been searched for in the processes e+e−→hff and e+e−→hA using data collected by ALEPH at the LEP e+e− collider, with center of mass energies at and near the Z peak. Using a variety of signatures adapted to various mass ranges for h and A, we have excluded a large domain in the parameter space. For large values of ν2ν1, the ratio of the vacuum expectation values of the two Higgs fields, the whole range from 0 to 38.8 GeV is excluded for Mh and MA at 95% CL.

PhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::PhenomenologyElementary particleSupersymmetrylcsh:QC1-999Standard ModelPseudoscalarsymbols.namesakeHiggs bosonsymbolsHigh Energy Physics::ExperimentHiggs mechanismParticle Physics - Experimentlcsh:PhysicsMinimal Supersymmetric Standard ModelBosonPhysics Letters B
researchProduct

Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2

2018

In August 2017, Advanced Virgo joined Advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the Advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications, this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction…

O2 observation runPhysics and Astronomy (miscellaneous)AstronomyAstrophysicsdetector: networkVIRGO: calibration01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics::Theorydetector: calibrationLIGOmirrorgravitational wavePhysicsQuantum Science & TechnologyPhysicsDetectorphotonAstrophysics::Instrumentation and Methods for AstrophysicsReconstruction algorithmMassless particleAmplitudeCalibration Advanced Virgo O2Physical SciencesCalibration[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Advanced VirgoAstrophysics - Instrumentation and Methods for Astrophysicson-linereconstructioninterferometergravitational wave calibration reconstruction photon calibrator Virgo O2 observation runPhysics MultidisciplinaryFOS: Physical sciencesO2General Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionParticle detectorGeneral Relativity and Quantum Cosmology0103 physical sciencesCalibrationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgo; Physics and Astronomy (miscellaneous)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgocalibrationphoton calibratorLIGOgravitational radiation detectordetector: sensitivity* Automatic Keywords *network
researchProduct

Measurement of the b → τ-ν̄τX branching ratio

1993

The definitions of “anthropology” found in various dictionaries cover a whole range of terms and in this section we provide an overview of all its connotations. In this way a variety of reflections about the essence of man become possible, for instance as : summit of creation; source of his own values; specific biological reality; intelligence (but what is this, really?); knowing subject or object of knowledge; social being and product of a culture. Following these lines of thought one realises that all these preoccupations have already been taken up, or at least touched upon, by communication theory.

PhysicsNuclear and High Energy PhysicsParticle physicsgeographySummitgeography.geographical_feature_categoryE+E ANNIHILATION010308 nuclear & particles physicsSection (typography)Subject (philosophy)Variety (linguistics)01 natural sciencesObject (philosophy)DECAYSCommunication theoryEpistemologyProduct (mathematics)0103 physical sciencesCover (algebra)010306 general physics
researchProduct

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

2021

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…

gravitational radiation: anisotropyPhysics and Astronomy (miscellaneous)gravitational radiation: stochasticAstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsCosmology & Astrophysicsenergy: fluxenergy: densitygravitational radiation: energyLIGOQCQBPhysicsSettore FIS/01Spectral indexPhysicsGalactic CenterAmplitudeGeneral relativitySidereal timePhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]gravitational radiation: power spectrumGravitationdata analysis methodAnisotropic stochastic gravitational-wave backgroundExperimental studies of gravityFOS: Physical sciencesO3O2General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsStochastic Background Gravitational Waves LIGO Virgo O1 O2 O3O1Gravitational wavesGeneral Relativity and Quantum CosmologyUPPER LIMITSstatistical analysis0103 physical sciencesadvanced LIGO and Virgoddc:530KAGRAKAGRACosmology & Astrophysics010306 general physicsSTFCgravitational waves; LIGO; VirgoGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundRCUKGalaxyLIGOVIRGOgravitational radiation: emissionspectrum: densityRADIATIONCROSS-CORRELATION SEARCHStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikgalaxyExperimental studies of gravity; General relativity; Gravitational waves
researchProduct

Searches for the standard Higgs boson

1990

Abstract A data sample corresponding to about 100 000 hadronic Z decays collected by ALEPH at LEP has been used to search for the standard Higgs boson produced in the reaction e + e − → H 0 Z 0∗ . No indication for any signal was found, and a 95% CL lower limit on the Higgs boson mass has been set at 41.6 GeV.

PhysicsNuclear and High Energy PhysicsAlephParticle physicsElectron–positron annihilationHigh Energy Physics::PhenomenologyHadronLower limitStandard ModelNuclear physicsHiggs bosonHigh Energy Physics::ExperimentNuclear ExperimentParticle Physics - ExperimentBoson
researchProduct

All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run

2018

Made available in DSpace on 2018-11-26T17:45:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-03-22 Australian Research Council Council of Scientific and Industrial Research of India Department of Science and Technology, India Science AMP; Engineering Research Board (SERB), India Ministry of Human Resource Development, India Spanish Agencia Estatal de Investigacion Vicepresidencia i Conselleria d'Innovacio, Recerca i Turisme Conselleria d'Educacio i Universitat del Govern de les Illes Balears Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana National Science Centre of Poland Swiss National Science Foundation (SNSF) Russian Foundation for Basic Rese…

Physics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsLIGO-VirgoMagnetar01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational waves long transients LIGOGravitational wavesGeneral Relativity and Quantum CosmologyUPPER LIMITSSearch algorithmSIGNALS0103 physical sciencesWaveformlong transientsHigh Energy PhysicsLIGO010306 general physicsgravitational wave010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLIGO-Virgo; gravitational waves; long duration transient[PHYS]Physics [physics]Gravitational wavelong duration transientLIGOgravitational waves; LIGO-Virgo; long duration transient; Physics and Astronomy (miscellaneous)Black holeMODELNeutron starAmplitudegravitational wavesBLACK-HOLEComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONNEUTRINOAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for high mass photon pairs in (f= e, μ, τ, v, q) at LEP

1993

Abstract The result of a search for high mass photon pairs from the processes e + e − → f f γγ (f = e, μ, τ, v and q) with the ALEPH detector is reported. The result for f = e , μ and τ is to be compared with the observation of 4 events by the L3 Collaboration with invariant masses, M γγ , of the two photons near 60 GeV. From a data sample approximately twice as large taken from 1990 to 1992, 6 events are found with M γγ distributed between 50 GeV and 72 GeV, while 4.9 events are expected from a QED calculation. There is no evidence for a mass peak; only one event ( μ + μ − γγ ) at M γγ = 59.4 ± 0.2 GeV is compatible with the L3 observation. In addition, for M γγ > 50 GeV, no event is found…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsHigh energyPhotonElectron–positron annihilationHigh massALEPH experimentPhysics Letters B
researchProduct

Measurement of Prompt Photon Production In Hadronic-z Decays

1993

The production of isolated photons in hadronic Z decays is measured with the ALEPH detector at LEP using a sample of 450 000 hadronic events. The corrected rate is given for several values of the minimum invariant mass squared cut between the photon and the jets. This measurement of final state radiation from the quarks is compared with the predictions of parton shower models JETSET, ARIADNE and HERWIG as well as with the predictions of QCD matrix element calculations. RI Perrier, Frederic/A-5953-2011; ANTONELLI, ANTONELLA/C-6238-2011; Buttar, Craig/D-3706-2011; Stahl, Achim/E-8846-2011; Passalacqua, Luca/F-5127-2011; Murtas, Fabrizio/B-5729-2012; St.Denis, Richard/C-8997-2012; Forti, Franc…

PhysicsQuantum chromodynamicsQuarkbusiness recordsParticle physicsAlephPhotonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsrecords managementElectron–positron annihilationPhysicsHigh Energy Physics::PhenomenologyHadron01 natural sciencesNuclear physics0103 physical sciencesretention schedule[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentInvariant mass010306 general physicsParton showerEngineering (miscellaneous)Particle Physics - Experiment
researchProduct

Search for a new weakly interacting particle

1991

Abstract A search for events of the type e + e − →l + l − X 0 , where X 0 can be any weakly interacting particle which couples to the Z, has been performed with the ALEPH detector at LEP, by searching for acollinear lepton pairs. Such particles can be excluded up to a mass of 7.0 GeV/c 2 for a value of the ratio of branching fractions, Br( Z →X 0 l + l − )/Br(Z→ l + l − ), greater than 2.5 × 10 −3 if the X 0 has third component of isospin, I 3 greater than 1 2 and decays to a pair of virtual gauge bosons. When this analysis is combined with the previous results of the Higgs particle searches from ALEPH, this limit can be extended to an X 0 mass of 60 GeV/c 2 .

PhysicsNuclear physicsNuclear and High Energy PhysicsAlephParticle physicsGauge bosonIsospinElectron–positron annihilationHigh Energy Physics::PhenomenologyHiggs bosonHigh Energy Physics::ExperimentParticle Physics - ExperimentLepton
researchProduct

STUDIES OF WIRE GAIN AND TRACK DISTORTION NEAR THE SECTOR EDGES OF THE ALEPH TIME PROJECTION CHAMBER

1986

Abstract The materials used to hold the wires at the sector edges in a large Time Projection Chamber (TPC) inrtoduce distortions of the electric drift field near those edges. These distortions degrade tracking information and sometimes cause large changes in wire gain near the edge. We have studied these two problems for the ALEPH TPC and have found that both can be greatly reduced by the addition of two field correction strips held at appropriate voltages.

PhysicsNuclear and High Energy PhysicsTime projection chamberField (physics)business.industryTrack (disk drive)STRIPSEdge (geometry)Tracking (particle physics)law.inventionOpticslawDistortionbusinessInstrumentationVoltage
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

2019

Two analysis errors have been identified that affect the results for a handful of the high-value pulsars given in Table 1 of Abbott et al. (2019). One affects the Bayesian analysis for the five pulsars that glitched during the analysis period, and the other affects the 5n-vector analysis for J0711-6830. Updated results after correcting the errors are shown in Table 1, which now supersedes the results given for those pulsars in Table 1 of Abbott et al. (2019). Updated versions of figures can be seen in Figures 1-4. Bayesian analysis.-For the glitching pulsars, the signal phase evolution caused by the glitch was wrongly applied twice and was therefore not consistent with our expected model of…

Known Pulsars010504 meteorology & atmospheric sciencesAstronomyAstrophysicsTable (information)Velagravitational waves; pulsars01 natural sciencesPulsar0103 physical sciencesLimit (mathematics)010303 astronomy & astrophysicsgravitational waveComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesPhysics[PHYS]Physics [physics]Gravitational waveTwo HarmonicsAstronomy and AstrophysicsGravitational Waves Known Pulsars Two Harmonics ErratumLIGOAmplitudegravitational wavesSpace and Planetary SciencepulsarsErratumGlitch (astronomy)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysical Journal
researchProduct

Status of Advanced Virgo

2017

The LIGO and the Virgo collaborations have recently announced the first detections of Gravitational Waves. Due to their weak amplitude, Gravitational Waves are expected to produce a very small effect on free-falling masses, which undergo a displacement of the order of 10-18 m for a Km-scale mutual distance. This discovery showed that interferometric detectors are suitable to reveal such a feeble effect, and therefore represent a new tool for astronomy, astrophysics and cosmology in the understanding of the Universe. To better reconstruct the position of the Gravitational Wave source and increase the signal-to-noise ratio of the events by means of multiple coincidence, a network of detectors…

cosmological modeldetector: performanceVirgo LIGO gravitational waveAstronomyinterferometerQC1-999detector: networkgravitational radiation: direct detection01 natural sciencesCoincidenceCosmologyPhysics and Astronomy (all)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]LIGO010306 general physicsSettore FIS/01Physics010308 nuclear & particles physicsGravitational wavePhysicsDetectorgravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomygravitational radiation detectorLIGOdetector: sensitivityInterferometryVIRGOAmplitudePhysics and Astronomygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for excited leptons in Z0 decay

1990

Due to the severity of system-wide power outages, though their probability of occurrence is slight, regulatory authorities require that a system restoration plan be drawn up and kept up to date at all times. The power outage that affected northeastern North America in 2003 proved the need for such a requirement. The particular structure of Hydro-Quebec's power system requires the use of a highly specific system restoration procedure. The daily preparation of the system restoration plan is based on a strategy whose application requires that a restoration sequence be drawn up that uses available equipment, the electrical behavior of which has been validated using appropriate studies. Over the…

PhysicsNuclear and High Energy PhysicsParticle physicsOperations researchbusiness.industryKnowledge engineeringPlan (drawing)Asset (computer security)Electric power systemSoftwareKnowledge baseCase-based reasoningUnavailabilitybusinessParticle Physics - Experiment
researchProduct

Measurement of the ratio using event shape variables

1993

Abstract The branching fraction of Z → b b relative to all hadronic decays of the Z has been measured using event shape variables to preferentially select Z → b b events. The method chosen applies a combination of shape discriminators and the selection of high transverse momentum leptons to event hemispheres. From a sample of 440 000 hadronic Z decays collected with the ALEPH detector at LEP, the ration Γ b b Γ had = 0.228±0.005( stat. )±0.005( syst. ) is measured.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsBranching fractionHadronElementary particle01 natural sciences0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsALEPH experimentLeptonBar (unit)Event (probability theory)Physics Letters B
researchProduct

Management and Control of the Read Out Processors (tpps) of the Aleph Time Projection Chamber

1989

The readout of the Aleph time projection chamber (TPC) relies on a set of 72 time projection processors (TPPs), which are based on a Motorola 68020 microprocessor running a real-time operating system. The advanced processing capabilities of the TPPs allow them to perform in parallel a number of tasks, both during and outside of data acquisition, which are outlined. The management and control of such a large number of intelligent devices is presented. The discussion covers the hardware configuration of the TPPs; the software running the TPPs; their management, status, and control; exception handling and message logging; and the TPP monitoring tasks. >

Nuclear and High Energy PhysicsAlephTime projection chamberComputer sciencebusiness.industryException handlingElectrical engineeringlaw.inventionSet (abstract data type)MicroprocessorData acquisitionSoftwareNuclear Energy and EngineeringlawElectrical and Electronic EngineeringProjection (set theory)businessComputer hardware
researchProduct

Search for supersymmetric particles using acoplanar charged-particle pairs from Z0 decays

1990

We have performed a search for supersymmetric particles using acoplanar pairs of oppositely-charged particles in decays of the Z0. In 0.53 pb−1 of integrated luminosity near the Z0 peak, we observe two events where approximately four are expected from background, allowing limits to be extended on combined photino and slepton masses, and also on combined photino and chargino masses.

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)Electron–positron annihilationHigh Energy Physics::PhenomenologyElementary particleSupersymmetryCharged particleNuclear physicsCharginoHigh Energy Physics::ExperimentPhotinoParticle Physics - ExperimentBosonPhysics Letters B
researchProduct

GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

AstronomyGeneral Physics and Astronomydetector: networkAstrophysicsGravitational waves; Binary black holes Intermediate mass black holes01 natural sciencesGeneral Relativity and Quantum Cosmologygravitational waves; black holesGW190521 BBHIntermediate mass black holesLIGO10. No inequalityQCQBSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPAIR-INSTABILITYSettore FIS/05Physicsstatistical analysis: BayesianSupernovaPhysical SciencesPhysique des particules élémentaires[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodBinary black holes Intermediate mass black holesgr-qcPhysics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Physics and Astronomy(all)Gravitation and AstrophysicsGravitational wavespair-instabilitySettore FIS/05 - Astronomia e AstrofisicaBinary black holeBinary black holesNeutron starsgravitational wavessupernova0103 physical sciences010306 general physicsLuminosity distanceSTFCGW190521Science & Technology9. Industry and infrastructureGravitational wavegravitational radiationRCUKblack hole: massgravitational waves black holegravitational radiation detectorLIGORedshiftBlack holewave: modelVIRGOblack hole: binaryIntermediate-mass black holegravitational radiation: emissionBBH[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

An experimental study of γγ → hadrons at LEP

1993

An analysis of γγ interactions has been performed using untagged hadronic data obtained by the ALEPH detector at LEP. The data show at low transverse momentum (pt) are well reproduced by a model based on the vector meson dominance mechinism (VDM). At high pt thrust the presence of hard scattering processes is demonstrated. This component is well described in shape and normalization by a QCD calculation.

Quantum chromodynamicsPhysicsNormalization (statistics)Nuclear and High Energy PhysicsParticle physicsROSS-SECTIONE+E-PHYSICSScatteringHigh Energy Physics::PhenomenologyHadronElementary particleVector meson dominancePhoton structure functionJET FRAGMENTATIONNuclear physicsALEPH ExperimentPHOTONLUND MONTE-CARLOCSCATTERINGHigh Energy Physics::ExperimentALEPH experiment
researchProduct

TRACKING WITH THE ALEPH TIME PROJECTION CHAMBER

1991

The tracking performance of the ALEPH time projection chamber (TPC) has been studied using the data taken during the LEP (Large Electron-Positron Collider) running periods in 1989 and 1990. After careful correction of residual distortions and optimization of coordinate reconstruction algorithms, a single coordinate resolution of 173 mu m in the azimuthal and 740 mu m in the longitudinal direction is achieved. This results in a momentum resolution for the TPC alone of Delta p/p/sup 2/=0.0012 (GeV/c)/sup -1/. In combination with the ALEPH inner tracking chamber (ITC), a total momentum resolution of Delta p/p/sup 2/=0.0008 (GeV/c)/sup -1/, close to the design specifications, is reached. >

PhysicsNuclear and High Energy PhysicsMomentum (technical analysis)AlephTime projection chamberPhysics::Instrumentation and DetectorsParticle acceleratorTracking (particle physics)Particle detectorlaw.inventionNuclear physicsAzimuthNuclear Energy and EngineeringlawHigh Energy Physics::ExperimentElectrical and Electronic EngineeringCollider
researchProduct

Search for a non-minimal Higgs boson produced in the reaction →

1993

Abstract A data sample corresponding to 1.23 million hadronic Z decays collected by the ALEPH detector at LEP has been searched for signals of the production of a non-minimal CP-even Higgs boson h in the reaction e + e − → hZ ∗ . The h decay modes considered were: those of the minimal standard model Higgs boson, with modified branching ratios; decays into a pair of CP-odd Higgs bosons A; and decays into invisible final states. Only one event was found, a very acoplanar e+e− pair which could originate from the standard model background process e + e − → e + e − v v . Upper limits for the cross-section of the reaction e + e − → hZ ∗ have been derived as a function of mh, the mass of the Higgs…

PhysicsNuclear and High Energy PhysicsAlephParticle physicsElectron–positron annihilationHigh Energy Physics::PhenomenologyHadronElementary particleSupersymmetryNuclear physicsHiggs bosonHigh Energy Physics::ExperimentALEPH experimentBosonPhysics Letters B
researchProduct

Advanced Virgo Status

2015

Abstract The detection of a gravitational wave signal in September 2015 by LIGO interferometers, announced jointly by LIGO collaboration and Virgo collaboration in February 2016, opened a new era in Astrophysics and brought to the whole community a new way to look at - or “listen” to - the Universe. In this regard, the next big step was the joint observation with at least three detectors at the same time. This configuration provides a twofold benefit: it increases the signal-to-noise ratio of the events by means of triple coincidence and allows a narrower pinpointing of GW sources, and, in turn, the search for Electromagnetic counterparts to GW signals. Advanced Virgo (AdV) is the second ge…

Triple coincidenceHistoryComputer sciencePhysics::Instrumentation and DetectorsAstronomy01 natural sciencesLIGO010303 astronomy & astrophysicsmedia_commonSettore FIS/01Detector/dk/atira/pure/sustainabledevelopmentgoals/partnershipsAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsdetector: upgradeComputer Science ApplicationsInterferometryUpgrade[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]upgradeDetection rateAdvanced VirgoGWOrders of magnitude (power)Nuclear and High Energy PhysicsnoiseVIRGO: sensitivitydetector: performancemedia_common.quotation_subjectinterferometerJoint observationgravitational radiation: direct detectionAdvanced Virgo; GW; detectorsEducationelectromagnetic field: production[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wavesSDG 17 - Partnerships for the Goals0103 physical sciencesAerospace engineeringdetector: design010308 nuclear & particles physicsGravitational wavebusiness.industrygravitational radiationAstronomy and AstrophysicsLIGOUniversegravitational radiation detector* Automatic Keywords *VIRGODetectors; Gravitational waves; Nuclear and High Energy Physics; Astronomy and Astrophysicsgravitational radiation: emissionHigh Energy Physics::ExperimentTelecommunicationsbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

2017

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known …

Gravitational-wave observatoryPhysics and Astronomy (miscellaneous)Astronomy01 natural sciencesrotationneutron starsGeneral Relativity and Quantum Cosmologygravitational waves; LIGO; stochastic gravitational-waveLIGOneutron star010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCpulsarQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gravitational Waves neutron stars advanced detectors narrow-band searchDetectorAmplitude[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaasymmetryCoherence (physics)young pulsarinterferometerneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)proper motionadvanced detectorsGravitational wavesPulsar0103 physical sciencesddc:530Gravitational Waves010308 nuclear & particles physicsGravitational wavegravitational radiation530 PhysikLIGOgravitational radiation detectorComputational physicscoherencedetector: sensitivityNeutron starelectromagneticPhysics and AstronomyGravitational waves; Pulsarnarrow-band searchDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]discovery
researchProduct

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

2017

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyCredible regionsGeneral Physics and Astronomyadvanced ligoADVANCED LIGOAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationVIRGO detectorFilter signalsGW170814TOOLLIGOInterferometerGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)010303 astronomy & astrophysicsQCchoiceQBHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectstoolFalse alarm rateCHOICEAntenna responseGravitational-wave signalsDetector networks[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenagravitational radiation: polarizationSignal processingAstrophysics::High Energy Astrophysical Phenomenablack hole: binary: coalescenceFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionGravitational-wave astronomy[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]General Relativity and Quantum CosmologyPhysics and Astronomy (all)Binary black hole0103 physical sciencesGW151226ddc:530KAGRASTFCGw150914GW170814 Virgo LIGO010308 nuclear & particles physicsGravitational wavePhysiqueVirgogravitational radiationAstronomyRCUKMatched filtersblack hole: massStarsLIGOgravitational radiation detectorBlack holeradiationVIRGOPhysics and AstronomyTesting Relativistic Gravitygravitationgravitational radiation: emissionStellar-mass black holesRADIATIONStellar black holeHigh Energy Physics::ExperimentAntennasDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A precise measurement of ΓZ→bb/ΓZ→hadrons

1993

A measurement of the partial width ratio Γbb/Γhad using a method which tags the Z --> bb decays through the lif etime of the produced heavy hadrons is presented. This method relies on the tracking precision afforded by a double-sided silicon vertex detector. The tag algorithm makes a probabilistic interpretation of three-dimensional track impact parameters, using the data to measure the resolution. By tagging the two b hadrons separately, both Γbb/Γhad and the tag efficiency can be determined from the data. For a 26% efficiency of tagging a single b hadron within the vertex detector solid angle coverage, a purity of 96% is achieved. A value of Γbb/Γhad = 0.2192+/-0.0026(stat.)+/-0.0016(Γcc/…

PhysicsNuclear and High Energy PhysicsParticle physicsPhysicsElectron–positron annihilationHadronSolid angleElementary particleTracking (particle physics)b-taggingStandard ModelALEPH ExperimentNuclear physicsHigh Energy Physics::ExperimentALEPH experimentPhysics Letters B
researchProduct

Constraining the p -Mode– g -Mode Tidal Instability with GW170817

2019

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=…

Physics010308 nuclear & particles physicsGravitational waveGeneral Physics and AstronomyBreaking wave7. Clean energy01 natural sciencesInstabilityComputational physicsNeutron starStarsAmplitude13. Climate action0103 physical sciencesWaveformExtreme value theory010303 astronomy & astrophysicsPhysical Review Letters
researchProduct

Search for decays of the Z0 into a photon and a pseudoscalar meson

1990

Abstract A search is reported for decays of the Z 0 into π 0 γ , ηγ and η ′ (958) γ in e + e − collisions using data collected during a scan around the Z 0 mass. In order to search for π 0 γ final states, in which the two photons from the π 0 decay are unresolved, the production of pairs of high-energy electromagnetic clusters is studied. The data are compared with the expectations from the pure QED process e + e − → γγ , and a 95% confidence level upper limit on the branching ratio of the Z 0 into π 0 γ of 4.9 × 10 −4 is derived. For η′γ, the decay modes of the mesons that contain two charged particles are largely free from QED background. These modes are used to place upper limits of 4.6 …

PhysicsNuclear physicsNuclear and High Energy PhysicsParticle physicsPhotonSecondary educationMesonBranching fractionElectron–positron annihilationPseudoscalar mesonCharged particleParticle Physics - ExperimentResearch method
researchProduct

The advanced Virgo longitudinal control system for the O2 observing run

2020

Following a successful period of data-taking between 2006 and 2011, the Virgo gravitational-wave detector was taken offline for a major upgrade. The changes made to the instrument significantly increased the complexity of the control systems and meant that an extended period of commissioning was required to reach a sensitivity appropriate for science data-taking. This commissioning period was completed in July of 2017 and the second-generation Advanced Virgo detector went on to join the Advanced LIGO detectors in the O2 science run in August of the same year. The upgraded detector was approximately twice as sensitive to binary neutron star mergers as the first-generation instrument. During …

neutron star: binaryPhysics::Instrumentation and DetectorsAstronomycavity: opticalSuspended optical cavities01 natural sciencesGravitational wave detectorsoff-lineGravitational wave detectors; Interferometer; Suspended optical cavities; Control loopsControl loopSuspended optical cavitieLIGOInterferometer010303 astronomy & astrophysicsdetectorsSettore FIS/01Physics[PHYS]Physics [physics]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsGravitational wave detectors Interferometer Suspended optical cavities Control loopsGravitational wave detectorUpgrade[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]upgradecontrol systemGravitational wavelongitudinalAstrophysics::High Energy Astrophysical PhenomenainterferometerAstrophysics::Cosmology and Extragalactic Astrophysicscontrol loops; gravitational wave detectors; interferometer; suspended optical cavitiesgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black holebinary: coalescence0103 physical sciencesControl loops[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and AstrophysicssensitivityLIGOgravitational radiation detectordetector: sensitivityNeutron star* Automatic Keywords *VIRGOblack hole: binaryControl systemgravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

2014

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

MECHANISMPhysics and Astronomy (miscellaneous)AstrophysicsFOLLOW-UP OBSERVATIONSASTROPHYSICAL SOURCESIceCubeneutrinoDetection of gravitational waveGravitational waves neutrinoObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCLIGO Scientific CollaborationQBPhysicsGAMMA-RAY BURSTS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYNuclear and High Energy Physics; Physics and Astronomy (miscellaneous)NEUTRINOSNeutrino detectorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNeutrinoSENSITIVITYGIANT FLARENuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]95.85.RyMUON NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATIONGravitational wavesGeneral Relativity and Quantum CosmologyINSTABILITIESSettore FIS/05 - Astronomia e AstrofisicaCORE-COLLAPSE SUPERNOVAE[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530SDG 7 - Affordable and Clean EnergyCORE-COLLAPSEDETECTOR/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyGravitational wave95.85.SzMAGNETIZED NEUTRON-STARS[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyTRANSIENTS95.85.Sz; 95.85.RyRELATIVISTIC STARSLIGOPhysics and Astronomy[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma-ray burstEMISSIONEnergy (signal processing)
researchProduct

Inclusive π±, K± and(p,p¯) differential cross-sections at the Z resonance

1995

Inclusive π±, K± and $$(p,\bar p)$$ differential cross-sections in hadronic decays of the Z have been measured as a function ofz=P hadron/P beam, the scaled momentum. The results are based on approximately 520 000 events measured by the ALEPH detector at LEP during 1992. Charged particles are identified by their rate of ionization energy loss in the ALEPH Time Projection Chamber. The position, ξ*, of the peak in the ln(1/z) distribution is determined, and the evolution of the peak position with centre-of-mass energy is compared with the prediction of QCD.

Quantum chromodynamicsPhysicsParticle physicsTime projection chamberPhysics and Astronomy (miscellaneous)Electron–positron annihilationHigh Energy Physics::PhenomenologyHadronResonance (particle physics)Charged particleNuclear physicsMomentumALEPH ExperimentHigh Energy Physics::ExperimentEngineering (miscellaneous)ALEPH experiment
researchProduct

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

Measurement of the and B− meson lifetimes

1993

Abstract The lifetimes of the B 0 and B − mesons have been measured with the ALEPH detector at LEP. Semileptonic decays of B 0 and B − mesons were partially reconstructed by identifying events containing a lepton with an associated D ∗+ or D 0 meson. The proper time of the B meson was estimated from the measured decay length and the momentum and mass of the D -lepton system. A fit to the proper time of 77 D ∗+ l − and 77 D 0 l − candidates, combined with a constraint on the lifetime ratio ( τ − τ 0 ) arising from the relative rates of observed D ∗+ l − and D 0 l − events, yielded the following lifetimes: τ 0 =1.52 −0.18 +0.20 ( stat. ) −0.13 +0.07 ( syst. ) ps , τ − = 1.47 −0.19 +0.22 ( sta…

Semileptonic decayPhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsElectron–positron annihilationNuclear TheoryHigh Energy Physics::Phenomenology01 natural sciencesNuclear physicsMomentum0103 physical sciencesDecay lengthProper timeHigh Energy Physics::ExperimentB mesonNuclear Experiment010306 general physicsLepton
researchProduct

Search for excited neutrinos in Z decay

1990

Excited neutrinos decaying into a neutrino and a photon are searched for in the ALEPH detector at LEP. No evidence is found for Z decay into vv∗ or v∗v∗ final states. Upper limits are derived on excited neutrino couplings up to excited neutrino masses close to the Z mass. Lower limits on the v∗ mass, independent of the v∗ decay modes, are deduced from the total Z width.

PhysicsNuclear and High Energy PhysicsParticle physicsAlephPhotonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaElectron–positron annihilationHigh Energy Physics::PhenomenologyDetectorLower limitNuclear physicsExcited stateHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Measurement of the branching ratio and an upper limit on

1995

Abstract Using 1.45 million hadronic Z decays collected by the ALEPH experiment at LEP, the b → τ − ν - τ X branching ratio is measured to be 2.75 ± 0.30 ± 0.37%. In addition an upper limit of 1.8 × 10 −3 at 90% confidence level is placed upon the exclusive branching ratio of B − → τ − ν - τ . These measurements are consistent with SM expectations, and put the constraint tan β M h ± GeV −1 at 90% confidence level on all Type II two Higgs doublet models (such as the MSSM).

ALEPH ExperimentNuclear physicsPhysicsNuclear and High Energy PhysicsBranching fractionElectron–positron annihilationHadronHiggs bosonLimit (mathematics)SupersymmetryALEPH experimentPhysics Letters B
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The read-out processors of the Aleph time projection chamber and their performance

1990

The Aleph detector is installed on the LEP electron-positron storage ring. Its central tracking detector, a time projection chamber (TPC), has about 50000 channels of sampling electronics. The digitized signals are processed by 72 double-width Fastbus modules built around an MC 68020 processor. The time projection processor is described, and the solutions, both hardware and software, adopted to run and manage such a complex system in a Fastbus-VAX environment are discussed. Practical experience with the system is reported. >

PhysicsNuclear and High Energy PhysicsAlephTime projection chamberbusiness.industryDetectorElectrical engineeringTracking (particle physics)Particle detectorSoftwareNuclear Energy and EngineeringNuclear electronicsElectrical and Electronic EngineeringProjection (set theory)businessComputer hardwareIEEE Transactions on Nuclear Science
researchProduct

Measurement of the strong coupling constant using τ decays

1993

The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the tau lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, alpha(s), (m(tau)2) = 0.330 +/-0.046, evolved to the Z mass, yields alpha(s)(M(Z)2) = 0. 1 18 +/- 0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3 +/- 0.5% . RI Perrier, Frederic/A-5953-2011; ANTONELLI, AN…

PhysicsCoupling constantNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron–positron annihilationPhysicsknowledge discoveryHigh Energy Physics::PhenomenologyDetectorHadronStrong interaction01 natural sciencesALEPH ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentInvariant massbibliographic databases010306 general physicsALEPH experimentParticle Physics - ExperimentLepton
researchProduct

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data

2019

We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …

AstronomyAstrophysicsRotation01 natural sciencesrotationGravitation Cosmology & AstrophysicsGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldscontinuous gravitational waveLIGOneutron starGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEPhysicsPhysical SystemsAmplitudeGeneral relativitygravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical Phenomenacontinuous gravitational waves; Advanced LIGOcontinuous gravitational wavesasymmetryGravitationNeutron stars & pulsarsGeneral relativityFrequency bandmedia_common.quotation_subjectgr-qcFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational waves0103 physical sciencesAdvanced LIGOddc:530Gravitation Cosmology & Astrophysics010306 general physicsgravitational radiation: frequencySTFCgravitational wavesneutron starsGravitational wave sourcesScience & TechnologyGravitational wave sources Gravitational waves Physical Systems Neutron stars and pulsars Gravitational wave detection010308 nuclear & particles physicsGravitational waveRCUKGravitational Wave PhysicsLIGONeutron stars & pulsarsNeutron starSkyNeutron stars and pulsarsDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

GW190412: Observation of a binary-black-hole coalescence with asymmetric masses

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

Physics and Astronomy (miscellaneous)AstronomyGravitational wave detection Gravitational wave sources Gravitational waves Astronomical black holesagn discsAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldsstar-clustersgravitational waves black holesgravitational waves; black holesAGN DISCSgravitational waves; black holes; LIGO; Virgoblack holegeneral relativityLIGOgravitational waveQCQBPhysicsSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)GRAVITATIONAL WAVE-FORMSPROGENITORSCOMPACT BINARIESblack hole: spinPhysicsPERTURBATIONSgravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical PhenomenaMETALLICITYmass: asymmetrymetallicitydata analysis methodGeneral relativityMERGERSgr-qcAstrophysics::High Energy Astrophysical PhenomenamultipolePREDICTIONSFOS: Physical sciencesgravitational wavesblack holesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGravitational wavesGeneral Relativity and Quantum CosmologyTheory of relativityBinary black holeSettore FIS/05 - Astronomia e AstrofisicaAstronomical black holesbinary: coalescence0103 physical sciencesnumerical methodsddc:530STAR-CLUSTERS010306 general physicsnumerical calculationsSTFCAstrophysiqueGravitational wave sourcesScience & Technologymass: solar010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKblack hole: massMass ratioblack holesLIGOEVOLUTIONgravitational radiation detectorBlack holedetector: sensitivityPhysics and Astronomyblack hole: binaryrelativity theorygravitational radiation: emissionmass ratioMultipole expansion[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics and astroparticle physics
researchProduct

Production and decay of charmed mesons at the Z resonance

1991

Abstract In a sample of 190 000 hadronic Z decays, three signals of charm production are observed: two from the exclusive decays D ° → K − π + and D ∗+ → D °π + → K − π + π + and one in the transverse-momentum distribution of soft hadrons relative to the nearest jet. The features of these signals are in good agreement with expectations based on the standard model and previous measurements of the branching fractions. The number of D ∗± → K ± π ± π ± per hadronic decay of the Z is measured to be (5.11±0.34) × 10 −3 , and the branching ratio B(D 0 → K − π + ) is (3.62 ± 0.34 ± 0.44)%. Charm hadronization has been studied. The average fraction of the beam energy carried by the D ∗ meson is foun…

Nuclear physicsPhysicsHadronic decayNuclear and High Energy PhysicsParticle physicsMesonBranching fractionElectron–positron annihilationHadronBeam energyParticle Physics - ExperimentHadronization
researchProduct

Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

2020

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perfor…

Gravitational waves; Neutron stars; Pulsars; Gravitational wave sources010504 meteorology & atmospheric sciencesAstronomyAstrophysicsVela01 natural sciencesGeneral Relativity and Quantum Cosmology[SPI]Engineering Sciences [physics]neutronMillisecond pulsaremission010303 astronomy & astrophysicsQCQBSettore FIS/01Physicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]PhysicsAstrophysics::Instrumentation and Methods for Astrophysics[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational-Waves Pulsars Neutron StarsGravitational wavePROPER MOTIONProper motiongr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNeutron starGeneral Relativity and Quantum Cosmology (gr-qc)Gravitational-WavesGravitational wavesNeutron starsSEARCHESSettore FIS/05 - Astronomia e AstrofisicaPulsar0103 physical sciencesPulsar[CHIM]Chemical SciencesAstrophysiqueSTFCPulsarsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesGravitational wave sourcescrab pulsarGravitational waveCrab PulsarRCUKAstronomy and AstrophysicsNeutron StarsGravitational waves Neutron stars Pulsars Gravitational wave sourcesLIGONeutron starSpace and Planetary Science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

THE FASTBUS READ-OUT SYSTEM FOR THE ALEPH TIME PROJECTION CHAMBER

1989

The readout system for the Aleph central tracking detector, a large time projection chamber (TPC), consists of more than 100 FASTBUS crates with approximately 1000 FASTBUS modules. The detector and its associated electronics are briefly presented, followed by a more detailed description of the readout and control system. The discussion covers the sector readout, electronics calibration, front-end data acquisition, data pipelining, and service request handling. Experiences with the system are discussed. >

PhysicsNuclear and High Energy PhysicsAlephTime projection chamberPhysics::Instrumentation and Detectorsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsTracking (particle physics)Data acquisitionNuclear Energy and EngineeringNuclear electronicsControl systemElectronic engineeringElectronicsElectrical and Electronic EngineeringbusinessComputer hardware
researchProduct

Search for the standard model Higgs boson

1993

Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- --> HZ* has been used to search for the standard model Higgs boson, in association with missing energy when Z* --> nunuBAR, or with a pair of energetic leptons when Z* --> e+e- or mu+mu-. No signal was found and, at the 95% confidence level, m(H) exceeds 58.4 GeV/c2. RI ANTONELLI, ANTONELLA/C-6238-2011; Buttar, Craig/D-3706-2011; Stahl, Achim/E-8846-2011; Passalacqua, Luca/F-5127-2011; Murtas, Fabrizio/B-5729-2012; St.Denis, Richard/C-8997-2012; Forti, Francesco/H-3035-2011; Ferrante, Isidoro/F-1017-2012

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]Electron–positron annihilationHadronElementary particle01 natural sciencesinternet searchingdistance calculationsStandard ModelALEPH Experiment0103 physical sciencesgraph applications.[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsALEPH experimentPhysicsMissing energy010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologymetric spacelcsh:QC1-999Higgs bosonHigh Energy Physics::Experimentlcsh:PhysicsParticle Physics - ExperimentLepton
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct

Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a

2022

Abbott, R., et al. (LIGO and VIRGO Collaboration)

neutron star: binaryGravitational waves(678)ELECTROMAGNETIC COUNTERPARTSBinary numberAstrophysics01 natural sciencesLIGOHigh-Energy Phenomena and Fundamental PhysicsQCSUPERNOVAQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01education.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Black holesSettore FIS/0506 humanities and the artsGRBEnergy InjectionSearch for gravitational wave transients associated to GRBs - Fermi and Swift satellitesAFTERGLOWPhysical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaSwiftGravitational waveBlack-Hole330Evolutiongr-qcGamma Ray Burst LIGO Virgo Gravitational WavesAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)0603 philosophy ethics and religionGravitational-wave astronomyNeutron starsENERGY INJECTIONCORE-COLLAPSEeducationGamma-ray burstScience & TechnologyCore-CollapseVirgoRCUKAstronomy and AstrophysicstriggerLuminosity FunctionDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie KartographieGamma Ray BurstSpace and Planetary ScienceBLACK-HOLEddc:520gravitational wave astronomyGravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]LIGO(920)Fermi Gamma-ray Space TelescopeAstronomyAstrophysicsGeneral Relativity and Quantum Cosmologyneutron starsENERGYGravitational wave detectorsGamma-ray bursts(629)Neutron Stars Mergers Gravitational Waves010303 astronomy & astrophysicsgravitational waves; gamma ray bursts; LIGO; Virgo; Fermi; SwiftCompact binary stars(283)astro-ph.HEPhysicscompact binary starsgamma-ray burstsgamma-ray bursts ; gravitational waves; LIGO; Virgogravitational waves060302 philosophy[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]PRECURSOR ACTIVITYGravitational wave astronomy(675)Gamma-ray burstsGW_HIGHLIGHT[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PopulationCompact binary starssatelliteFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysicsgamma ray: burstMASS1STGLASTGamma-ray bursts; Gravitational wave astronomy; Gravitational waves; Gravitational wave detectors0103 physical sciencesSTFCFermigravitational waves; gamma-ray bursts; LIGO; Virgo; Fermi; SwiftGravitational wavegravitational radiationgamma ray burstsgamma-ray burts--black holesLIGOEVOLUTIONOBSERVING RUNNeutron stars(1108)Neutron starPhysics and Astronomy[SDU]Sciences of the Universe [physics]LUMINOSITY FUNCTIONBlack holes(162)INJECTIONEMISSION
researchProduct

A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo

2021

This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s-1 Mpc-1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s-1 Mpc-1. A significant …

Gravitacióneutron star: binarycosmological model010504 meteorology & atmospheric sciencesAstronomyGravitational Waves Hubble constant O2 LIGO Virgodetector: network01 natural sciencesCosmologyGeneral Relativity and Quantum CosmologyLIGOdark energy010303 astronomy & astrophysicsQCPhysicsSettore FIS/01Hubble constantSettore FIS/05CATALOGPhysical Sciencessymbols[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)DATA RELEASECOSMOLOGICAL PARAMETERSFOS: Physical sciencesO2General Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsLUMINOSITY FUNCTIONSgravitational radiation: direct detectionGravitational-wave astronomy1STArticleelectromagnetic field: productionsymbols.namesakeBinary black hole0103 physical sciencesDISTRIBUTIONS/dk/atira/pure/subjectarea/asjc/1900/1912K-CORRECTIONSSDG 7 - Affordable and Clean EnergyAstrophysiqueSTFC0105 earth and related environmental sciencesGravitational Waves/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & TechnologyGravitational waveVirgoAstronomyRCUKAstronomy and Astrophysicscosmology; gravitational waves; Hubble constant310 Galaxies and CosmologyLIGOGalaxyEVOLUTIONDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie Kartographiegravitational radiation detectorVIRGOblack hole: binarySpace and Planetary Science[SDU]Sciences of the Universe [physics]DENSITYgravitational radiation: emissionDark energyAstronomiaddc:520/dk/atira/pure/subjectarea/asjc/3100/3103galaxyGravitational wave astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Hubble's lawThe Astrophysical Journal
researchProduct

All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run

2019

We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…

AstronomyGravitational waves detectionAstrophysicsdetector: network01 natural sciencesSignalGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational waves detection Stochastic gravitational-wavebinary [black hole]LIGOgravitational waveQCQBmedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsgravitational waves neutron starsgravitational wavesGeneral relativityburst [gravitational radiation]network [detector]Physical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]direct detection [gravitational radiation]Advanced VirgoAstrophysics - High Energy Astrophysical PhenomenaFrequency bandsensitivity [detector]gr-qcmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionemission [gravitational radiation]Binary black holeSettore FIS/05 - Astronomia e Astrofisicabinary: coalescence0103 physical sciencesgravitational radiation: burstAdvanced LIGOWaveformddc:530010306 general physicscosmic stringSTFCScience & Technology010308 nuclear & particles physicsGravitational waveRCUKStochastic gravitational-waveGravitational Wave PhysicsLIGOgravitational radiation detectorgravitational waves; Advanced LIGO; Advanced VirgoCosmic stringdetector: sensitivityVIRGOPhysics and Astronomyblack hole: binarySkygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Correlation measurements in Z→τ+τ− and the τ neutrino helicity

1994

Using data collected with the ALEPH detector at LEP correlations between the decay products of the τ+ and τ- produced in the decay of the Z have been measured. The measurements performed in the decays τ-->πν and τ-->ϱν place limits on deviations from the Standard Model. These are given by the parameter ζ with ζ = -1 for the Standard Model. The measured values are ζπ = -0.95 +/- 0.11 +/- 0.05 and ζϱ = -1.03 +/- 0.11 +/- 0.05. For models which predict ζπ = ζϱ = ζ - interpreted as the average τ neutrino helicity - the measurement is ζ = -0.99 +/- 0.07 +/- 0.04.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron–positron annihilationElementary particle01 natural sciencesHelicityNuclear physicsALEPH Experiment0103 physical sciencesNeutrino010306 general physicsALEPH experiment
researchProduct

Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run

2018

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2 $M_\odot$) ultracompact binaries to be less than $1.0 \times 10^6 \text{Gpc}^{-3} \text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_\odot$, 1.0 $M_\odot$) ultracompact binaries to be less than $1.9 \times 10^4 \text{Gpc}^{-3} \text{yr}^{-1}$ (at 90 percent confidence). N…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftendensity: fluctuationMACHOAstronomyGeneral Physics and AstronomyPrimordial black holeAstrophysicsCoalescence01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationLIMITSddc:550Massive compact halo objectLIGOneutron starQCQBPhysicseducation.field_of_studyPhysicsDensity fluctuationBinary systemsgravitational wavesPhysical SciencesSearch enginesastro-ph.COblack hole: primordialAstrophysics - Cosmology and Nongalactic AstrophysicsGravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcBinary formationAstrophysics::High Energy Astrophysical PhenomenaPopulationDark matterPhysics MultidisciplinaryEarly universeFOS: Physical sciencesPrimordial black holesGeneral Relativity and Quantum Cosmology (gr-qc)dark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesCoalescence rateGravitation and AstrophysicsPhysics and Astronomy (all)General Relativity and Quantum Cosmologybinary: coalescence0103 physical sciencesddc:530Delta functions010306 general physicseducationSTFCAstrophysics::Galaxy AstrophysicsScience & Technologymass: solar010308 nuclear & particles physicsGravitational waveStellar evolutionsbinary: formationgravitational radiationRCUKblack hole: massGalaxiesStarsGalaxyLIGOBlack holeVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikMicro-lensing[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

2019

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 10-6 (modeled) and 3.1 10-4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associate…

Burst astrophysicAstrofísicaneutron star: binary010504 meteorology & atmospheric sciencesBinary numberAstrophysics01 natural sciencesLIGOQCSUPERNOVArelativistic jetsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01counterpartGRBGravitational waves (678)Physical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaGravitational waveGravitationstarsblack-holeAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)precursor activityGravitational wavesSettore FIS/05 - Astronomia e AstrofisicasupernovaCORE-COLLAPSEGamma-ray burstGravitational wave sourcesScience & TechnologyVirgoRCUKAstronomy and AstrophysicsHigh energy astrophysics (739)RedshiftDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie Kartographiedetector: sensitivityVIRGOSpace and Planetary Sciencegravitational radiation: emissionBLACK-HOLEddc:520Gravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]STARSGravitacióAstronomySignalGeneral Relativity and Quantum CosmologyBurst astrophysicslocalizationemission010303 astronomy & astrophysicsPhysicsDetectorGamma-ray bursts (629)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourcePRECURSOR ACTIVITYGamma-ray burstsLIGO (920)High energy astrophysicsdata analysis methodBurst astrophysics (187)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstAstronomy & AstrophysicsMASSgravitational radiation: direct detectionGravitational wave astronomy Gravitational wave sources LIGO; Gravitational waves Gamma-ray bursts Burst astrophysics High energy astrophysicsGravitational wave astronomy (675)electromagnetic field: production0103 physical sciencesnumerical calculationsGRB; gravitational waves; LIGO; VirgoSTFC0105 earth and related environmental sciencesgravitational wavesneutron starsGravitational waveCOUNTERPARTgravitational radiationLIGOcore-collapsegravitational radiation detectorGravitational wave sources (677)radiationNeutron starPhysics and AstronomymassRADIATIONEMISSIONGravitational wave astronomy; Gravitational wave sources; LIGO; Gravitational waves; Gamma-ray bursts; Burst astrophysics; High energy astrophysics
researchProduct

ALEPH: a Detector for Electron-Positron Annihilations at LEP

1990

Process-centred Software Engineering Environments (PSEE) are the most recent generation of environments supporting software development activities. Most of PSEE are based on mechanisms promoting enforcement and automation of process activities. In this kind of mechanisms the process models are prescribed in a detailed and complete way. But the experience shows that supporting processes is more concerned with the flexibility of guidance offered during the process performance than with enforcement of a collection of predefined process models. In this paper, we present a solution to support strategic processes in a PSEE by providing a flexible guidance during process enactment.

PhysicsFlexibility (engineering)Nuclear and High Energy PhysicsAlephhigh-energy physicsProcess modelingProcess (engineering)business.industrySoftware developmentLEPAutomationparticle detectorsData acquisitionDetectors and Experimental TechniquesLEP; particle detectors; high-energy physicsSoftware engineeringbusinessEnforcementInstrumentationparticle detector
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

PERFORMANCE OF THE ALEPH TIME PROJECTION CHAMBER

1991

The performance of the ALEPH Time Projection Chamber (TPC) has been studied using data taken during the LEP running periods in 1989 and 1990. After correction of residual distortions and optimisation of coordinate reconstruction algorithms, single coordinate resolutions of 173-mu-m in the azimuthal and 740-mu-m in the longitudinal direction are achieved. This results in a momentum resolution for the TPC of DELTA-p/p2 = 1.2 x 10(-3) (GeV/c)-1. In combination with the ALEPH Inner Tracking Chamber (ITC), a total momentum resolution of DELTA-p/p2 = 0.8 x 10(-3) (GeV/c)-1 is obtained. With respect to particle identification, the detector achieves a resolution of 4.4% for the measurement of the i…

PhysicsNuclear and High Energy PhysicsTime projection chamberPhysics::Instrumentation and DetectorsTracking (particle physics)Particle identificationParticle detectorMomentumNuclear physicsAzimuthPair productionHigh Energy Physics::ExperimentDetectors and Experimental TechniquesInstrumentationImage resolution
researchProduct

Measurement of the B hadron lifetime

1991

The average lifetime of B hadrons has been measured by the ALEPH experiment at LEP. Events containing B hadrons are selected by the identification of leptons with high transverse momentum in hadronic Z decays, and the lifetime is extracted from a fit to the impact parameter distribution of the lepton tracks. From a sample of 1.7×105 hadronic Z decays a lifetime of 1.29±0.06±0.10 ps is measured.

PhysicsNuclear and High Energy PhysicsParticle physicsMesonElectron–positron annihilationHigh Energy Physics::PhenomenologyHadronElementary particleNuclear physicsHigh Energy Physics::ExperimentB mesonImpact parameterNuclear ExperimentALEPH experimentParticle Physics - ExperimentLeptonPhysics Letters B
researchProduct

Measurement of B- mixing at the Z

1991

Abstract From more than 175 000 hadronic Z decays observed with the ALEPH detector at LEP, we select 823 events with pairs of leptons in the final state. From these we measure χ , the probability thata b hadron which is observed to decay originated as a b hadron. We find χ =0.132 −0.026 +0.027 .

PhysicsNuclear and High Energy PhysicsParticle physicsAlephElectron–positron annihilationHigh Energy Physics::PhenomenologyHadronDecision makerMeasure (mathematics)Nuclear physicsHigh Energy Physics::ExperimentNuclear ExperimentMixing (physics)LeptonPhysics Letters B
researchProduct

Measurement of the strong coupling constant alfa_s from global event-shape variables of hadronic Z decays

1991

Abstract An analysis of global event-shape variables has been carried out for the reaction e+e−→Z0→hadrons to measure the strong coupling constant αs. This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine αs, second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain αs(MZ2) = 0.121 ± 0.002(stat.)±0.003(s…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsElectron–positron annihilationHadronMeasure (mathematics)Hadronizationlaw.inventionNuclear physicsRenormalizationlawHigh Energy Physics::ExperimentColliderConstant (mathematics)Particle Physics - Experiment
researchProduct

GW170817: Measurements of Neutron Star Radii and Equation of State

2018

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESGW170817BINARIESddc:550DENSELIGODENSE MATTEREquation of State010303 astronomy & astrophysicsQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsNeutron Star RadiusPhysicsGravitational effectsEquations of stateParametrizationsElectromagnetic observationsGravitational-wave signals3. Good healthQUADRUPOLE-MOMENTSMacroscopic propertiesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEquations of state of nuclear matterGravitational wavesaturation: densityBinary neutron starsNUCLEON MATTEREquations of state of nuclear matter; Gravitational wave sources; Gravitational waves; Nuclear matter in neutron starsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaGW170817 Neutron Star Radius Equation of StatePhysics Multidisciplinaryneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionGravitation and AstrophysicsNuclear matter in neutron starsGravitational waveselectromagnetic field: productionPhysics and Astronomy (all)Pulsargalaxy: binary0103 physical sciencesddc:530NeutronMASSESSTFCequation of state: parametrizationAstrophysics::Galaxy AstrophysicsNeutronsExtreme conditionsGravitational wave sourcesEquation of stateScience & TechnologyNeutron Star Interior Composition Explorer010308 nuclear & particles physicsGravitational wavegravitational radiationRCUKFlocculationSaturation densityUNIVERSAL RELATIONSStarsLIGOgravitational radiation detectorNeutron starStarsVIRGOPhysics and Astronomygravitational radiation: emissionneutron star: binary: coalescenceDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]MATTER
researchProduct

Search for GW signals associated with GRBs

2021

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyGamma ray burstsGravitational wavesCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct