0000000000667818
AUTHOR
Luca Caricchi
Unravelling textural heterogeneity in obsidian:shear-induced outgassing in the Rocche Rosse flow
Obsidian flow emplacement is a complex and understudied aspect of silicic volcanism. Of particular importance is the question of how highly viscous magma can lose sufficient gas in order to erupt effusively as a lava flow. Using an array of methods we study the extreme textural heterogeneity of the Rocche Rosse obsidian flow in Lipari, a 2. km long, 100. m thick, ~. 800. year old lava flow, with respect to outgassing and emplacement mechanisms. 2D and 3D vesicle analyses and density measurements are used to classify the lava into four textural types: 'glassy' obsidian (<. 15% vesicles), 'pumiceous' lava (>. 40% vesicles), high aspect ratio, 'shear banded' lava (20-40% vesicles) and lo…
The viscous-brittle transition of crystal-bearing slilic melt: direct observation of magma rupture and healing
Magmas may fl ow or break depending on their deformation rate. The transition between such viscous and brittle behavior controls the style of volcanic eruptions. While the brittle failure of silicate melts is reasonably well characterized, the effect of crystals on the viscous-brittle transition has not yet been constrained. Here we examine the effect of suspended crystals on the mechanical failure of magmas using torsion experiments performed at temperatures (600‐ 900 °C), strain rates (10 ‐4 ‐10 ‐1 s ‐1 ), and confi ning pressures (200‐300 MPa) relevant for volcanic systems. We present a relationship that predicts the critical stress and associated strain rate at which magmas fail as a fu…