0000000000667915

AUTHOR

Ida Ritacco

Post-Translational Regulation of CYP450s Metabolism As Revealed by All-Atoms Simulations of the Aromatase Enzyme.

Phosphorylation by kinases enzymes is a widespread regulatory mechanism able of rapidly altering the function of target proteins. Among these are cytochrome P450s (CYP450), a superfamily of enzymes performing the oxidation of endogenous and exogenous substrates thanks to the electron supply of a redox partner. In spite of its pivotal role, the molecular mechanism by which phosphorylation modulates CYP450s metabolism remains elusive. Here by performing microsecond-long all-atom molecular dynamics simulations, we disclose how phosphorylation regulates estrogen biosynthesis, catalyzed by the Human Aromatase (HA) enzyme. Namely, we unprecedentedly propose that HA phosphorylation at Y361 markedl…

research product

All-Atom simulations disclose how cytochrome reductase reshapes the substrate access/egress routes of its partner cyp450s

Cytochromes P450 enzymes (CYP450s) promote the oxidative metabolism of a variety of substrates via the electrons supplied by the cytochrome P450 reductase (CPR) and upon formation of a CPR/CYP450 adduct. In spite of the pivotal regulatory importance of this process, the impact of CPR binding on the functional properties of its partner CYP450 remains elusive. By performing multiple microsecond-long all-Atom molecular dynamics simulations of a 520â »000-Atom model of a CPR/CYP450 adduct embedded in a membrane mimic, we disclose the molecular terms for their interactions, considering the aromatase (HA) enzyme as a proxy of the CYP450 family. Our study strikingly unveils that CPR binding alters…

research product

The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation

Cytochromes P450 (CYP450s) promote the biosynthesis of steroid hormones with major impact on the onset of diseases such as breast and prostate cancers. By merging distinct functions into the same catalytic scaffold, steroidogenic CYP450s enhance complex chemical transformations with extreme efficiency and selectivity. Mammalian CYP450s and their redox partners are membrane-anchored proteins, dynamically associating to form functional machineries. Mounting evidence signifies that environmental factors are strictly intertwined with CYP450s catalysis. Atomic-level simulations have the potential to provide insights into the catalytic mechanism of steroidogenic CYP450s and on its regulation by e…

research product

Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers.

Introduction: The vast majority of breast cancers (BC) are estrogen receptor positive (ER+). The most effective treatments to fight this BC type rely on estrogen deprivation therapy, by inhibiting the aromatase enzyme, which performs estrogen biosynthesis, or on blocking the estrogens signaling path via modulating/degrading the estrogen's specific nuclear receptor (estrogen receptor-?, ER?). While being effective at early disease stage, patients treated with aromatase inhibitors (AIs) may acquire resistance and often relapse after prolonged therapies. Areas covered: In this compendium, after an overview of the historical development of the AIs currently in clinical use, and of the computati…

research product